Skip to main content
Log in

Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A robust fixed-time control framework is presented to stabilize flexible spacecraft’s attitude system with external disturbance, uncertain parameters of inertia, and actuator uncertainty. As a stepping stone, a nonlinear system having faster fixed-time convergence property is preliminarily proposed by introducing a time-varying gain into the conventional fixed-time stability method. This gain improves the convergence rate. Then, a fixed-time observer is proposed to estimate the uncertain torque induced by disturbance, uncertain parameters of inertia, and actuator uncertainty. Fixed-time stability is ensured for the estimation error. Using this estimated knowledge and the full-states’ measurements, a nonsingular terminal sliding controller is finally synthesized. This is achieved via a nonsingular and faster terminal sliding surface with faster convergence rate. The closed-loop attitude stabilization system is proved to be fixed-time stable with the convergence time independent of initial states. The attitude stabilization performance is robust to disturbance and uncertainties in inertia and actuators. Simulation results are also shown to validate the attitude stabilization performance of this control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. MoradiMaryamnegari, H., Khoshnood, A.M.: Robust adaptive vibration control of an underactuated flexible spacecraft. J. Vib. Control 25(4), 834–850 (2019)

    MathSciNet  Google Scholar 

  2. Meng, T., He, W., Yang, H., Liu, J.K., You, W.: Vibration control for a flexible satellite system with output constraints. Nonlinear Dyn. 85(4), 2673–2686 (2016)

    MATH  Google Scholar 

  3. Pukdeboon, C., Jitpattanakul, A.: Anti-unwinding attitude control with fixed-time convergence for a flexible spacecraft. Int. J. Aerosp. Eng. 2017, (2017)

  4. Tian, B., Lu, H., Zuo, Z., Wang, H.: Fixed-time stabilization of high-order integrator systems with mismatched disturbances. Nonlinear Dyn. 94(4), 2889–2899 (2018)

    MATH  Google Scholar 

  5. Chen, C.C.: A unified approach to finite-time stabilization of high-order nonlinear systems with and without an output constraint. Int. J. Robust Nonlinear Control 29(2), 393–407 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Chen, C.C., Sun, Z.Y.: Fixed-time stabilisation for a class of high-order non-linear systems. IET Control Theory Appl. 12(18), 2578–2587 (2018)

    Google Scholar 

  7. Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Chen, C.C., Xu, S.S.D., Liang, Y.W.: Study of nonlinear integral sliding mode fault-tolerant control. IEEE/ASME Trans. Mech. 21(2), 1160–1168 (2015)

    Google Scholar 

  9. Zhao, L., Jia, Y.: Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. Nonlinear Dyn. 78(4), 2779–2794 (2014)

    MATH  Google Scholar 

  10. Lee, D.: Nonlinear disturbance observer-based robust control of attitude tracking of rigid spacecraft. Nonlinear Dyn. 88(2), 1317–1328 (2017)

    MATH  Google Scholar 

  11. Cao, S., Zhao, Y.: Anti-disturbance fault-tolerant attitude control for satellites subject to multiple disturbances and actuator saturation. Nonlinear Dyn. 89(4), 2657–2667 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Chen, W.H., Yang, J., Guo, L., Li, S.: Disturbance observer-based control and related methods: an overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2015)

    Google Scholar 

  13. Miao, Y., Wang, F., Liu, M.: Anti-disturbance backstepping attitude control for rigid-flexible coupling spacecraft. IEEE Access 6, 50729–50736 (2018)

    Google Scholar 

  14. Liu, H., Guo, L., Zhang, Y.M.: An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafs. Nonlinear Dyn. 67(3), 2081–2088 (2012)

    MATH  Google Scholar 

  15. Wu, S., Chu, W., Ma, X., Radice, G., Wu, Z.: Multi-objective integrated robust H\(\infty \) control for attitude tracking of a flexible spacecraft. Acta Astron. 151, 80–87 (2018)

    Google Scholar 

  16. Zhang, C., Ma, G., Sun, Y., Li, C.: Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression. Nonlinear Dyn. 96(3), 1–18 (2019)

    Google Scholar 

  17. Erdong, J., Zhaowei, S.: Passivity-based control for a flexible spacecraft in the presence of disturbances. Int. J. Nonlinear Mech. 45(4), 348–356 (2010)

    Google Scholar 

  18. Zhu, Y., Guo, L., Qiao, J., Li, W.: An enhanced anti-disturbance attitude control law for flexible spacecrafts subject to multiple disturbances. Control Eng. Pract. 84, 274–283 (2019)

    Google Scholar 

  19. Zhou, C., Zhou, D.: Robust dynamic surface sliding mode control for attitude tracking of flexible spacecraft with an extended state observer. Proc. Inst. Mech. Eng., G. Aerosp. Eng. 231(3), 533–547 (2017)

    Google Scholar 

  20. Shen, Q., Yue, C., Goh, C.H.: Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints. J. Guid. Control. Dyn. 40(5), 1293–1299 (2017)

    Google Scholar 

  21. Wang, Z., Xu, M., Jia, Y., Xu, S., Tang, L.: Vibration suppression-based attitude control for flexible spacecraft. Aerosp. Sci. Technol. 70, 487–496 (2017)

    Google Scholar 

  22. Bang, H., Ha, C.-K., Kim, J.H.: Flexible spacecraf attitude maneuver by application of sliding mode control. Acta Astron. 57(11), 841–850 (2005)

    Google Scholar 

  23. Lu, K., Xia, Y.: Finite-time attitude stabilization for rigid spacecraft. Int. J. Robust Nonlinear Control 25(1), 32–51 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Jing, C., Xu, H., Niu, X., Song, X.: Adaptive nonsingular terminal sliding mode control for attitude tracking of spacecraft with actuator faults. IEEE Access 71, 31485–31493 (2019)

    Google Scholar 

  25. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Lu, K., Xia, Y., Fu, M., Yu, C.: Adaptive finite-time attitude stabilization for rigid spacecraft with actuator faults and saturation constraints. Int. J. Robust Nonlinear Control 26(1), 28–46 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Zou, A.M., Kumar, K.D.: Finite-time attitude control for rigid spacecraft subject to actuator saturation. Nonlinear Dyn. 96(2), 1017–1035 (2019)

    Google Scholar 

  28. Smaeilzadeh, S.M., Golestani, M.: A finite-time adaptive robust control for a spacecraft attitude control considering actuator fault and saturation with reduced steady-state error. Trans. Inst. Meas. Control 41(4), 1002–1009 (2019)

    Google Scholar 

  29. Huang, Y., Jia, Y.: Robust adaptive fixed-time tracking control of 6-DOF spacecraft fly-around mission for noncooperative target. Int. J. Robust Nonlinear Control 28(6), 2598–2618 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Huang, Y., Jia, Y.: Adaptive fixed-time relative position tracking and attitude synchronization control for non-cooperative target spacecraft fly-around mission. J. Franklin Inst. 354(18), 8461–8489 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Gao, J., Cai, Y.: Fixed-time control for spacecraft attitude tracking based on quaternion. Acta Astron. 115, 303–313 (2015)

    Google Scholar 

  32. Shi, X.N., Zhou, Z.G., Zhou, D.: Adaptive fault-tolerant attitude tracking control of rigid spacecraft on Lie group with fixed-time convergence. Asian J. Control (2019)

  33. Xiao, B., Yin, S., Wu, L.: A structure simple controller for satellite attitude tracking maneuver. IEEE Trans. Ind. Electron. 64(2), 1436–1446 (2016)

    Google Scholar 

  34. Gao, Z., Liu, X., Chen, M.: Unknown input observer based robust fault estimation for systems corrupted by partially-decoupled disturbances. IEEE Trans. Ind. Electron. 63(4), 2537–2547 (2016)

    Google Scholar 

  35. Cong, B.L., Chen, Z., Liu, X.D.: Disturbance observer-based adaptive integral sliding mode control for rigid spacecraft attitude maneuvers. Proc. Inst. Mech. Eng. J. Aerosp. Eng. 227(10), 1660–1671 (2013)

    Google Scholar 

  36. Li, B., Hu, Q., Ma, G.: Extended State Observer based robust attitude control of spacecraft with input saturation. Aero. Sci. Technol. 50, 173–182 (2016)

    Google Scholar 

  37. Ran, D., Chen, X., de Ruiter, A., Xiao, B.: Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels. Acta Astronaut. 145, 501–514 (2018)

    Google Scholar 

  38. Ti, C., Shan, J.: Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on SO (3). Nonlinear Dyn. 95(3), 1827–1839 (2019)

    MATH  Google Scholar 

  39. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Automatic Control 57(8), 2106–2110 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Xiao, B., Hu, Q., Zhang, Y.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control Syst. Technol. 20(6), 1605–1612 (2012)

    Google Scholar 

  41. Levent, A.: Higher-order sliding modes, differentiation and output feedback control. Int. J. Control 76(9/10), 924–941 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Huang, Y., Jia, Y.: Fixed-time consensus tracking control for second-order multi-agent systems with bounded input uncertainties via NFFTSM. IET Control Theory Appl. 11(16), 2900–2909 (2017)

    MathSciNet  Google Scholar 

  43. Bing, X., Shen, Y., Okyay, K.: Attitude stabilization control of flexible satellites with high accuracy: an estimator-based approach. IEEE/ASME Trans. Mech. 22(1), 349–358 (2017)

    Google Scholar 

  44. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River, NJ (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A (Proof of Lemma 1)

Defining a new variable \( W = y^{1 - pk} \), it can be obtained from (9) that

$$\begin{aligned} \begin{aligned} \dot{W}&= - \left( 1 - pk\right) y^{-pk}\left( \xi \left( y\right) ^{\frac{1}{k}}\alpha y^p + \xi \left( y\right) ^{\frac{1}{k}}\beta y^\lambda \right) ^k\\&= - \left( 1 - pk\right) \left( \xi \left( y\right) ^{\frac{1}{k}}\alpha + \xi \left( y\right) ^{\frac{1}{k}}\beta W^\eta \right) ^k \end{aligned} \end{aligned}$$
(28)

where \( \eta = \frac{\lambda - p}{1 - pk} \).

Since \(1-pk>0\) and \(\xi \left( y\right) >1\), it follows from (28) that

$$\begin{aligned} \begin{aligned} \dot{W} \le - \left( 1 - pk\right) \left( \alpha + \beta W^\eta \right) ^k \end{aligned} \end{aligned}$$
(29)

Applying the result in [39] and the comparison principle [44], it can be proved from (29) that W is fixed-time stable. Moreover, solving (28), one can get the settling time as

$$\begin{aligned} \begin{aligned} T_1&= \frac{1}{\left( 1 - pk\right) }\int _0^{W_0} \frac{1}{\left( \xi \left( y\right) ^{\frac{1}{k}}\alpha + \xi \left( y\right) ^{\frac{1}{k}}\beta W^\eta \right) ^k}dW\\&= \frac{1}{\left( 1 - pk\right) }\left( \int _1^{W_0} \frac{1}{\xi \left( y\right) \left( \alpha + \beta W^{\bar{\eta }}\right) ^k}dW\right. \\&\quad +\, \, \left. \int _0^1 \frac{1}{\xi \left( y\right) \left( \alpha + \beta W^{\frac{1}{k}}\right) ^k}dW\right) \end{aligned} \end{aligned}$$
(30)

where \( \bar{\eta } = \frac{q - p}{1 - pk} \) and \(W_0=(y(0))^{1 - pk} \).

If \( \xi (\varvec{y}) = 1 \), then one has

$$\begin{aligned} \begin{aligned} T_1^\prime&= \frac{1}{\left( 1 - pk\right) }\left( \int _1^{W_0} \frac{1}{\left( \alpha + \beta W^{\bar{\eta }}\right) ^k}dW\right. \\&\quad +\, \, \left. \int _0^1 \frac{1}{\left( \alpha + \beta W^{1/k}\right) ^k}dW\right) \end{aligned} \end{aligned}$$
(31)

Since \( 1 \le \xi (y) \le a \), then \( 1/a \le 1/\xi (y) \le 1 \). Hence, for all \(W_0\), it is concluded that

$$\begin{aligned} T_1 < T_1^\prime \end{aligned}$$
(32)

On other hand, \(T_1^\prime \) is also the settling time of the fixed-time system given in [39]. To this end, one can prove that the settling time provided by the proposed system (9) is less than [39]. The convergence rate of the system (9) is faster than [39].

From (30), it be proved that \( T_1^\prime \) is bounded as

$$\begin{aligned} \begin{aligned} T_1^\prime&\le \frac{1}{\left( 1 - pk\right) }\left( \int _1^{W_0} \frac{1}{\beta ^kW^{\bar{\eta }k}}dW + \int _0^1 \frac{1}{\alpha ^k + \beta ^kW}dW\right) \\&\le \frac{1}{\left( 1 - pk\right) }\left( \frac{1 - W_0^{1 - \bar{\eta }k}}{\beta ^k\left( \bar{\eta }k - 1\right) } + \frac{1}{\beta ^k}\ln \left( 1 + \left( \beta /\alpha \right) ^k\right) \right) \end{aligned} \end{aligned}$$
(33)

Since \( \bar{\eta }k > 1 \) and \( W_0 > 0 \), one has

$$\begin{aligned} T_1^\prime \le \frac{1}{\beta ^k\left( qk - 1\right) } + \frac{1}{\beta ^k\left( 1 - pk\right) }\ln \left( 1 + \left( \beta /\alpha \right) ^k\right) \end{aligned}$$
(34)

which does not depend on the initial condition.

Appendix B (Proof of Theorem 1)

It is obtained from (13) and (14) that the estimation error of the observer satisfies

$$\begin{aligned} \begin{aligned} \dot{\varvec{e}}&= \dot{\varvec{z}} - \dot{\hat{\varvec{z}}} = \dot{\varvec{z}} + l_2l_3\hat{\varvec{z}} - \frac{1}{l_2}\dot{\varvec{y}} - l_3\varvec{y}\\&\quad -\, \, \left( \xi (\varvec{e})^{1/k_1}\alpha _1\mathrm{{sig}}(\varvec{e})^{\frac{2p_1k_1 - 1}{k_1}}\right. \\&\quad +\, \, \left. \xi (\varvec{e})^{1/k_1}\beta _1\mathrm{{sig}}(\varvec{e})^{\frac{2\lambda _1k_1 - 1}{k_1}}\right) ^{k_1}\\&= - l_2l_3\varvec{e} - \left( \xi (\varvec{e})^{1/k_1}\alpha _1\mathrm{{sig}}(\varvec{e})^{\frac{2p_1k_1 - 1}{k_1}}\right. \\&\quad +\, \, \left. \xi (\varvec{e})^{1/k_1}\beta _1\mathrm{{sig}}(\varvec{e})^{\frac{2\lambda _1k_1 - 1}{k_1}}\right) ^{k_1} \end{aligned} \end{aligned}$$
(35)

Define a Lyapunov candidate function as \(V_1 = 0.5\varvec{e}^\mathrm{{T}}\varvec{e}\), it leaves its time derivative as

$$\begin{aligned} \begin{aligned} \dot{V}_1&= \varvec{e}^\mathrm{{T}}\dot{\varvec{e}} \le - \varvec{e}^\mathrm{{T}}\left( \xi (\varvec{e})^{1/k_1}\alpha _1\mathrm{{sig}}(\varvec{e})^{\frac{2p_1k_1 - 1}{k_1}}\right. \\&\quad +\, \, \left. \xi (\varvec{e})^{1/k_1}\beta _1\mathrm{{sig}}(\varvec{e})^{\frac{2\lambda _1k_1 - 1}{k_1}}\right) ^{k_1}\\&\le - \sum \limits _{i = 1}^3 \left( \xi (\varvec{e})^{1/k_1}\alpha _1\left| e_i \right| ^{\frac{2p_1k_1 - 1}{k_1} + \frac{1}{k_1}}\right. \\&\quad +\, \, \left. \xi (\varvec{e})^{1/k_1}\beta _1\left| e_i \right| ^{\frac{2\lambda _1k_1 - 1}{k_1} + \frac{1}{k_1}} \right) ^{k_1}\\&\le - \left( \xi ^{1/k_1}\mu _1V_1^{p_1} + \xi ^{1/k_1}\mu _2V_1^{\lambda _1}\right) ^{k_1} \end{aligned} \end{aligned}$$
(36)

Applying Lemma 1 and the comparison principle [44], it is concluded that \( V(\varvec{e}) \equiv 0 \) is met for \(t \ge T_e\), where the settling time \(T_e\) satisfies (15).

Appendix C (Proof of Theorem 2)

From (16) and (17), it follows that

$$\begin{aligned} \begin{aligned} \varvec{d}_e&= \varvec{d}_{l} - l_1\varvec{x}_2 + \varvec{M}^{-1}(\varvec{x}_1)\left( \varvec{C}_1(\varvec{x}_1 \text{, } \varvec{x}_2)\varvec{x}_2\right. \\&\quad +\, \, \left. \varvec{C}_2(\varvec{x}_1 \text{, } \varvec{x}_2)\right) - \hat{d}_{l} + l_1\varvec{x}_2\\&\quad -\, \, \varvec{M}^{-1}(\varvec{x}_1)\left( \varvec{C}_1(\varvec{x}_1 \text{, } \varvec{x}_2)\varvec{x}_2 + \varvec{C}_2(\varvec{x}_1 \text{, } \varvec{x}_2)\right) \\&= \varvec{d}_{l} - \hat{\varvec{d}}_{l} \end{aligned} \end{aligned}$$
(37)

Substituting (17) in (37) gives

$$\begin{aligned} \begin{aligned} \varvec{d}_e&= \varvec{d}_{l} - \frac{l_1l_2\hat{\varvec{z}} + \dot{\varvec{y}}}{l_2}\\&= \varvec{d}_{l} - \frac{l_1l_2\hat{\varvec{z}} - l_1l_2\varvec{z} + l_2\varvec{d}_{l}}{l_2} = l_1\varvec{e} \end{aligned} \end{aligned}$$
(38)

Because \( \varvec{e}(t) \equiv \varvec{0} \) is achieved in Theorem 1 for \( t \ge T_e \), \( \varvec{d}_e(t) = \varvec{0} \) is achieved for \( t \ge T_e \). It is inferred that \( \varvec{d} \) is estimated utilizing \( \varvec{d}_\mathrm{est} \) after \( T_e \).

Appendix D (Proof of Theorem 3)

When \( \varvec{S} = \varvec{0} \) is reached, from (19), one has

$$\begin{aligned} \begin{aligned} \dot{x}_{1i}&= - \left( h(x_{1i})\right) ^{1/\gamma }\mathrm{{sig}}^{1/\gamma }\left( x_{1i}\right) \\&= - \left( \xi (\varvec{x}_1)^{1/k_2}\alpha _1\left| x_{1i} \right| ^{p_2 - 1/k_2\gamma }\right. \\&\quad \,\, -\, \, \left. \xi (\varvec{x}_1)^{1/k_2}\beta _2\left| x_{1i} \right| ^{\lambda _2 - 1/k_2\gamma }\right) ^{k_2}\mathrm{{sig}}^{1/\gamma }\left( x_{1i}\right) \\&= - \left( \xi (\varvec{x}_1)^{1/k_2}\alpha _2\left| x_{1i} \right| ^{p_2}\right. \\&\quad \,\, -\, \, \left. \xi (\varvec{x}_1)^{1/k_2}\beta _2\left| x_{1i} \right| ^{\lambda _2}\right) ^{k_2}\mathrm{{sgn}}\left( x_{1i}\right) \end{aligned} \end{aligned}$$
(39)

Defining a new variable \( \Xi _i = \left| x_{1i} \right| ^{1 - p_2k_2} \), (39) is expressed as

$$\begin{aligned} \begin{aligned} \dot{\Xi }_i&= - \left( 1 - p_2k_2\right) \dot{x}_{1i}\left| x_{1i} \right| ^{-p_2k_2}\mathrm{{sgn}}(x_{1i})\\&= - \left( 1 - p_2k_2\right) \left| x_{1i} \right| ^{-p_2k_2}\left( \xi (\varvec{x}_1)^{1/k_2}\alpha _2\left| x_{1i} \right| ^{p_2}\right. \\&\quad \, +\, \, \left. \xi (\varvec{x}_1)^{1/k_2}\beta _2\left| x_{1i} \right| ^{\lambda _2}\right) ^{k_2}\\&= - \left( 1 - p_2k_2\right) \left( \xi (\varvec{x}_1)^{\frac{1}{k_2}}{\alpha _2} + \xi (\varvec{x}_1)^{\frac{1}{k_2}}\beta _2\Xi _i^{\eta _2}\right) ^{k_2} \end{aligned} \end{aligned}$$
(40)

where \( \eta _2 = \frac{\lambda _2 - p_2}{1 - p_2k_2} \). Similar to Lemma 1, the system state converges to zero after a fixed time given by (21).

Appendix E (Proof of Theorem 4)

Select another Lyapunov candidate function \( V_s = \varvec{S}^\mathrm{{T}}\varvec{S} \). Applying (8), one can calculate the time derivative of \( V_s\) as

$$\begin{aligned} \begin{aligned} \dot{V}_s&= 2\varvec{S}^\mathrm{{T}}\left( \dot{\varvec{H}}(\varvec{x}_1)\varvec{x}_1 + \varvec{H}(\varvec{x}_1)\dot{\varvec{x}}_1 \right. \\&\quad \quad +\, \gamma \mathrm{{diag}}\left( \left| x_{2i} \right| ^{\gamma - 1}\right) \\&\quad \times \, \left. \left( - \varvec{M}^{-1}(\varvec{x}_1)\left( \varvec{C}_1(\varvec{x}_1 \text{, } \varvec{x}_2)\varvec{x}_2 \right. \right. \right. \\&\quad \quad \left. \left. \left. +\, \varvec{C}_2(\varvec{x}_1 \text{, } \varvec{x}_2)\right) \right. \right. \\&\quad +\, \, \left. \left. \varvec{u}(\varvec{x}_1) + \varvec{d}(\varvec{x}_1,\varvec{\chi },\varvec{\omega })\right) \right) \end{aligned} \end{aligned}$$
(41)

Substituting the controller (23) into (41) yields

$$\begin{aligned} \begin{aligned} \dot{V}_s&= \frac{2}{\rho _0}\varvec{S}^\mathrm{{T}}\mathrm{{diag}}\left( \mu _\sigma \left( \left| x_{2i}\right| ^{\gamma - 1}\right) \right) \\&\quad \times \, \left( \xi ^{1/k_3}\alpha _3\mathrm{{sig}}(\varvec{S})^{(2p_3k_3 - 1)/k_3}\right. \\&\quad +\, \, \left. \xi ^{1/k_3}\beta _3\mathrm{{sig}}(\varvec{S})^{(2\lambda _3k_3 - 1)/k_3}\right) ^{k_3}\\&\quad +\, \, \gamma \varvec{S}^\mathrm{{T}}\mathrm{{diag}}\left( \left| x_{2i} \right| ^{\gamma - 1}\right) \left( \varvec{d} - \varvec{d}_\mathrm{est}\right) \end{aligned} \end{aligned}$$
(42)

Since \( \varvec{d}_e = \varvec{d} - \varvec{d}_\mathrm{est} = \varvec{0} \) for \( t > T_e \), (42) can be simplified as

$$\begin{aligned} \begin{aligned} \dot{V}_s&= \frac{2}{\rho _0}\varvec{S}^\mathrm{{T}}\mathrm{{diag}}\left( \mu _\sigma \left( \left| x_{2i} \right| ^{\gamma - 1}\right) \right) \\&\quad \times \, \left( \xi ^{\frac{1}{k_3}}\alpha _3\mathrm{{sig}}(\varvec{S})^{(2p_3k_3 - 1)/k_3}\right. \\&\quad +\, \, \left. \xi ^{\frac{1}{k_3}}\beta _3\mathrm{{sig}}(\varvec{S})^{(2\lambda _3k_3 - 1)/k_3}\right) ^{k_3}\\&{\le } {-} \sum \limits _{i = 1}^3 \left( \xi ^{\frac{1}{k_3}}\alpha _3\rho _0^{-\frac{1}{k_3}}\mu _\sigma ^{\frac{1}{k_3}}\left( \left| x_{2i} \right| ^{\gamma {-} 1}\right) \left| S_i \right| ^{\frac{2p_3k_3 {-} 1}{k_3} {+} \frac{1}{k_3}}\right. \\&+\, \, \left. \xi ^{\frac{1}{k_3}}\beta _3\rho _0^{-\frac{1}{k_3}}\mu _\sigma ^{\frac{1}{k_3}}\left( \left| x_{2i}\right| ^{\gamma - 1}\right) \left| S_i \right| ^{\frac{2\lambda _3k_3 - 1}{k_3} + \frac{1}{k_3}}\right) ^{k_3}\\&\le - \left( \xi ^{\frac{1}{k_3}}\mu _3V^{p_3} + \xi ^{1/k_3}\mu _4V^{\lambda _3}\right) ^{k_3} \end{aligned} \end{aligned}$$
(43)

where \( \mu _3 = \alpha _3\rho _0^{-1/k_3}\mu _\sigma ^{1/k_3}\left( \left| x_{2i} \right| ^{\gamma - 1}\right) \) and \( \mu _4 = \beta _3\rho _0^{-1/k_3} \)\(\mu _\sigma ^{1/k_3}\left( \left| x_{2i} \right| ^{\gamma - 1}\right) \). Applying the comparison principle [44] and the result in Lemma 1, it is ready to conclude that \( V_s \equiv 0 \) after the settling time \(T_1\) satisfying (26).

After reaching the sliding surface \(\varvec{S}=\varvec{0}\), it can be obtained from Theorem 2 that the states will be zero after the settling time \(T_s\). Then, one can prove that the attitude Euler angles and the rotation velocity are fixed-time stable with the settling time \(T_c\) satisfying \(T_{c}<T_{s}+T_{1}\) regardless any initial states.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Xiao, B. & Golestani, M. Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dyn 100, 2505–2519 (2020). https://doi.org/10.1007/s11071-020-05596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05596-5

Keywords

Navigation