Skip to main content
Log in

Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame’s response to acoustic perturbation, the new model considers the acoustic field and the unsteady heat release rate as a pair of nonlinearly coupled damped oscillators. By varying the coupling strength, multiple dynamical behaviors, including limit cycle oscillation, quasi-periodic oscillation, strange nonchaos, and chaos, can be captured. Furthermore, the model was able to qualitatively replicate the different behaviors of a laminar thermoacoustic system observed in experiments by Kabiraj et al. (Chaos (Woodbury, N Y) 22:023129, 2012). By analyzing the temporal variation of phase difference between heat release rate oscillations and pressure oscillations under different dynamical states, we show that the characteristics of the dynamical states depend on the nature of synchronization between the two signals, which is consistent with previous experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lieuwen, T., Yang, V.: Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. Progress in Astronautics and Aeronautics, Reston (2005)

    Google Scholar 

  2. Oefelein, J.C., Yang, V.: Comprehensive review of liquid-propellant combustion instabilities in F-1 engines. J. Propul. Power 9(5), 657–677 (1993)

    Google Scholar 

  3. Lieuwen, T., Murray, N.: Unsteady combustor physics. J. Acoust. Soc. Am. 134, 1431 (2013)

    Google Scholar 

  4. Rayleigh, J.W.S.: The explanation of certain acoustical phenomena. Nature 18(455), 319–321 (1878)

    Google Scholar 

  5. McManus, K., Poinsot, T., Candel, S.: A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 19(1), 1–29 (1993)

    Google Scholar 

  6. Lieuwen, T.: Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor. J. Propul. Power 18, 61–67 (2002)

    Google Scholar 

  7. Ananthkrishnan, N., Deo, S., Culick, F.E.: Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber. Combust. Sci. Technol. 177(2), 221–248 (2005)

    Google Scholar 

  8. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Westview Press, Boulder (2000)

    MATH  Google Scholar 

  9. Torres, H., Lieuwen, T., Johnson, C., Daniel, B., Zinn, B.: Experimental investigation of combustion instabilities in a gas turbine combustor simulator. In: 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, AIAA-99-0712 (1999)

  10. Sterling, J.D.: Nonlinear analysis and modelling of combustion instabilities in a laboratory combustor. Combust. Sci. Technol. 89(1–4), 167–179 (1993)

    Google Scholar 

  11. Candel, S.: Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29(1), 1–28 (2002)

    Google Scholar 

  12. Cheung, W.S., Sims, G.J.M., Copplestone, R.W., Tilston, J.R., Wilson, C.W., Stow, S.R., Dowling, A.P.: Measurement and analysis of flame transfer function in a sector combustor under high pressure conditions. In: Proceedings of ASME Turbo Expo, 2003-GT38219, pp. 1–8 (2003)

  13. Macquisten, M.A., Whiteman, M., Stow, S.R., Moran, A.J.: Exploitation of measured flame transfer functions for a two-phase lean fuel injector to predict thermoacoustic modes in full annular combustors. In: Proceedings of ASME Turbo Expo, Düsseldorf, Germany, June 16–20, Paper GT2014-25036. ASME, New York (2014)

  14. Paschereit, C., Schuermans, B., Polifke, W., Mattson, O.: Measurement of transfer matrices and source terms of premixed flames. J. Eng. Gas Turbines Power 124, 239–247 (2002)

    Google Scholar 

  15. Bellows, B.D., Bobba, M.K., Seitzman, J.M., Lieuwen, T.: Nonlinear flame transfer function characteristics in a swirl-stabilized combustor. J. Eng. Gas Turbines Power 129(4), 954–961 (2006)

    Google Scholar 

  16. Dowling, A.P.: Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346, 271–290 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Dowling, A.P.: A kinematic model of a ducted flame. J. Fluid Mech. 394, 51–72 (1999)

    MATH  Google Scholar 

  18. Gelb, A., Vander Velde, W.E.: Multiple-input Describing Functions and Nonlinear Systems Design. McGraw Hill, New York (1968)

    MATH  Google Scholar 

  19. Noiray, N., Durox, D., Schuller, T., Candel, S.: A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139–167 (2008)

    MATH  Google Scholar 

  20. Juniper, M.P., Sujith, R.I.: Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech. 50(1), 661–689 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Kabiraj, L., Saurabh, A., Wahi, P., Sujith, R.I.: Route to chaos for combustion instability in ducted laminar premixed flames. Chaos (Woodbury, N.Y.) 22, 023129 (2012)

    Google Scholar 

  22. Kasthuri, P., Unni, V.R., Sujith, R.I.: Bursting and mixed mode oscillations during the transition to limit cycle oscillations in a matrix burner. Chaos (Woodbury, N.Y.) 29, 043117 (2019)

    MathSciNet  Google Scholar 

  23. Kabiraj, L., Sujith, R.I.: Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376–397 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Kashinath, K., Waugh, I., Juniper, M.P.: Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: Bifurcations and routes to chaos. J. Fluid Mech. 761, 399–430 (2014)

    MathSciNet  Google Scholar 

  25. Premraj, D., Pawar, S.A., Kabiraj, L., Sujith, R.I.: Strange Nonchaos in Self-Excited Singing Flames. arXiv e-prints arXiv:1910.06916 (2019)

  26. Gopal, R., Venkatesan, A., Lakshmanan, M.: Applicability of 0–1 test for strange nonchaotic attractors. Chaos Interdiscip. J. Nonlinear Sci. 23(2), 023123 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Pawar, S., Seshadri, A., Unni, V.R., Sujith, R.I.: Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow. J. Fluid Mech. 827, 664–693 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Mondal, S., Pawar, S., Sujith, R.I.: Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos. Chaos Interdiscip. J. Nonlinear Sci. 27, 103119 (2017)

    MathSciNet  Google Scholar 

  29. Raaj, A., Venkatramani, J., Mondal, S.: Synchronization of pitch and plunge motions during intermittency route to aeroelastic flutter. Chaos Interdiscip. J. Nonlinear Sci. 29(4), 043129 (2019)

    MATH  Google Scholar 

  30. Godavarthi, V., Pawar, S.A., Unni, V.R., Sujith, R.I., Marwan, N., Kurths, J.: Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor. Chaos Interdiscip. J. Nonlinear Sci. 28(11), 113111 (2018)

    MathSciNet  Google Scholar 

  31. Guan, Y., Murugesan, M., Li, L.K.B.: Strange nonchaotic and chaotic attractors in a self-excited thermoacoustic oscillator subjected to external periodic forcing. Chaos Interdiscip. J. Nonlinear Sci. 28(9), 093109 (2018)

    Google Scholar 

  32. Gottwald, G., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  34. Feudel, U., Kuznetsov, S., Pikovsky, A.: Strange Nonchaotic Attractors. World Scientific, Singapore (2006)

    MATH  Google Scholar 

  35. Gottwald, G.A., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2042), 603–611 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lipika Kabiraj for sharing the experimental data with us to validate our model. The research at UC San Diego was supported by internal grants. RIS acknowledges the support of ONRG (Grant No. N62909-18-1-2061, contract monitor, Dr. R. Kolar).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vishnu R. Unni or Abhishek Saha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, Y., Unni, V.R., Sujith, R.I. et al. Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors. Nonlinear Dyn 100, 3295–3306 (2020). https://doi.org/10.1007/s11071-020-05706-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05706-3

Keywords

Navigation