Skip to main content
Log in

Dynamic analysis of piezoelectric energy harvester under combination parametric and internal resonance: a theoretical and experimental study

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, theoretical and experimental analysis of a piezoelectric energy harvester with parametric base excitation is presented under combination parametric resonance condition. The harvester consists of a cantilever beam with a piezoelectric patch and an attached mass, which is positioned in such a way that the system exhibits 1:3 internal resonance. The generalized Galerkin’s method up to two modes is used to obtain the temporal form of the nonlinear electromechanical governing equation of motion. The method of multiple scales is used to reduce the equations of motion into a set of first-order differential equations. The fixed-point response and the stability of the system under combination parametric resonance are studied. The multi-branched non-trivial response exhibits bifurcations such as turning point and Hopf bifurcations. Experiments are performed under various resonance conditions. This study on the parametric excitation along with combination and internal resonances will help to harvest energy for a wider frequency range from ambient vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Meindl, J.D.: Low power microelectronics: retrospect and prospect. Proc. IEEE 83(4), 619–635 (1995)

    Google Scholar 

  2. Beeby, S., White, N.M.: Energy Harvesting for Autonomous Systems. Artech House, Norwood (2010)

    Google Scholar 

  3. Priya, S., Inman, D.J.: Energy Harvesting Technologies, vol. 21. Springer, New York (2009)

    Google Scholar 

  4. Challa, V.R., Prasad, M.G., Fisher, F.T.: A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater. Struct. 18(9), 095029 (2009)

    Google Scholar 

  5. Yan, Z., Abdelkefi, A., Hajj, M.R.: Piezoelectric energy harvesting from hybrid vibrations. Smart Mater. Struct. 23(2), (2014)

  6. Yang, W., Towfighian, S.: A hybrid nonlinear vibration energy harvester. Mech. Syst. Signal Process. 90, 317–333 (2017)

    Google Scholar 

  7. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16(3), (2007)

  8. Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices: a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17(4), (2008)

  9. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 254102 (2009)

    Google Scholar 

  10. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1–2), 515–530 (2009)

    Google Scholar 

  11. Arrieta, A.F., Hagedorn, P., Erturk, A., Inman, D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97(10), 104102 (2010)

    Google Scholar 

  12. Ferrari, M., Ferrari, V., Guizzetti, M., Andò, B., Baglio, S., Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuators A 162(2), 425–431 (2010)

    Google Scholar 

  13. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D 239(10), 640–653 (2010)

    MATH  Google Scholar 

  14. Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133(1), 011007 (2011)

    Google Scholar 

  15. Friswell, M.I., Ali, S.F., Bilgen, O., Adhikari, S., Lees, A.W., Litak, G.: Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 23(13), 1505–1521 (2012)

    Google Scholar 

  16. Triplett, A., Quinn, D.D.: The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20(16), 1959–1967 (2009)

    Google Scholar 

  17. Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)

    Google Scholar 

  18. Nayfeh, A.H., Lacarbonara, W., Chin, C.-M.: Nonlinear normal modes of buckled beams: three-to-one and one-to-one internal resonances. Nonlinear Dyn. 18(3), 253–273 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Cao, J., Zhou, S., Inman, D.J., Chen, Y.: Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn. 80(4), 1705–1719 (2015)

    Google Scholar 

  20. Cartmell, M.: Introduction to Linear, Parametric, and Nonlinear Vibrations. Chapman and Hall, London (1990)

    MATH  Google Scholar 

  21. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  22. Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis and Tools. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  23. Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osorio, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20(5), 545–557 (2009)

    Google Scholar 

  24. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67(2), 1147–1160 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Jia, Y., Yan, J., Soga, K., Seshia, A.A.: A parametrically excited vibration energy harvester. J. Intell. Mater. Syst. Struct. 25(3), 278–289 (2014)

    Google Scholar 

  26. He, X.Q., Rafiee, M., Mareishi, S.: Nonlinear dynamics of piezoelectric nanocomposite energy harvesters under parametric resonance. Nonlinear Dyn. 79(3), 1863–1880 (2015)

    MATH  Google Scholar 

  27. Yildirim, T., Zhang, J., Sun, S., Alici, G., Zhang, S., Li, W.: Design of an enhanced wideband energy harvester using a parametrically excited array. J. Sound Vib. 410, 416–428 (2017)

    Google Scholar 

  28. Mam, K., Peigney, M., Siegert, D.: Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations. J. Sound Vib. 389, 411–437 (2017)

    Google Scholar 

  29. Nayfeh, A.H., Balachandran, B.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42(11), 175–202 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Nayfeh, A.H., Ibrahim, R.A.: Nonlinear interactions: analytical, computational, and experimental methods. Appl. Mech. Rev. 54(4), B60–B61 (2001)

    Google Scholar 

  31. Franco, M., Damián, H.Z.: Internal resonance in a vibrating beam: A zoo of nonlinear resonance peaks. PLoS ONE 11(9), 1–18 (2016)

    Google Scholar 

  32. Manevitch, L., Manevich, A.: The Mechanics of Nonlinear Systems with Internal Resonances. Imperial College Press, London (2005)

    Google Scholar 

  33. Vijayan, K., Friswell, M.I., Khodaparast, H.H., Adhikari, S.: Non-linear energy harvesting from coupled impacting beams. Int. J. Mech. Sci. 96, 101–109 (2015)

    Google Scholar 

  34. Dwivedy, S.K., Kar, R.C.: Dynamics of a slender beam with an attached mass under combination parametric and internal resonances, part ii: Periodic and chaotic responses. J. Sound Vib. 222(2), 281–305 (1999a)

    Google Scholar 

  35. Dwivedy, S.K., Kar, R.C.: Nonlinear dynamics of a cantilever beam carrying an attached mass with 1:3:9 internal resonances. Nonlinear Dyn. 31(1), 49–72 (2003)

    MATH  Google Scholar 

  36. Jiang, W.A., Chen, L.Q., Ding, H.: Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dyn. 85(4), 2507–2520 (2016)

    Google Scholar 

  37. Chen, L.Q., Jiang, W.A., Panyam, M., Daqaq, M.F.: A broadband internally resonant vibratory energy harvester. J. Vib. Acoust. 138(6), 061007 (2016)

    Google Scholar 

  38. Harne, R.L., Sun, A., Wang, K.W.: Leveraging nonlinear saturation-based phenomena in an l-shaped vibration energy harvesting system. J. Sound Vib. 363, 517–531 (2016)

    Google Scholar 

  39. Xu, J., Tang, J.: Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance. Appl. Phys. Lett. 107(21), 213902 (2015)

    Google Scholar 

  40. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Felix, J.L.P.: Nonlinear piezoelectric vibration energy harvesting from a portal frame with two-to-one internal resonance. Meccanica 52(11–12), 2583–2602 (2017)

    MathSciNet  Google Scholar 

  41. Yan, Z., Hajj, M.R.: Nonlinear performances of an autoparametric vibration-based piezoelastic energy harvester. J. Intell. Mater. Syst. Struct. 28(2), 254–271 (2017)

    Google Scholar 

  42. Garg, A., Dwivedy, S.K.: Nonlinear dynamics of parametrically excited piezoelectric energy harvester with 1:3 internal resonance. Int. J. Non-Linear Mech. 111, 82–94 (2019a)

    Google Scholar 

  43. Zavodney, L.D., Nayfeh, A.H.: The non-linear response of a slender beam carrying a lumped mass to a principal parametric excitation: theory and experiment. Int. J. Non-Linear Mech. 24(2), 105–125 (1989)

    MATH  Google Scholar 

  44. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130(4), 041002 (2008)

    Google Scholar 

  45. Kar, R.C., Dwivedy, S.K.: Non-linear dynamics of a slender beam carrying a lumped mass with principal parametric and internal resonances. Int. J. Non-Linear Mech. 34(3), 515–529 (1999)

    MATH  Google Scholar 

  46. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Hoboken (2011)

    Google Scholar 

  47. Dwivedy, S.K., Kar, R.C.: Dynamics of a slender beam with an attached mass under combination parametric and internal sesonances, Part I: Steady state response. J. Sound Vib. 221(5), 823–848 (1999b)

    Google Scholar 

  48. Garg, A., Dwivedy, S.K.: Piezoelectric energy harvester under parametric excitation: a theoretical and experimental investigation. J. Intell. Mater. Syst. Struct. 31(4), 612–631 (2019b)

    Google Scholar 

  49. MFC-M2814-P2. https://www.smart-material.com/MFC-product-P2.html, (2019)

Download references

Funding

Funding was provided by the Indian Institute of Technology Guwahati, India, as a research assistantship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshul Garg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

$$\begin{aligned} {h_{11}}= & {} \int _0^1 {{\textstyle {{\rho (x)} \over {{\rho _b}{A_b}}}}\psi _n^2 \text {d}x} ,\\ {h_{12}}= & {} \int _0^1 {\delta (x - \beta )\psi _n^2 \text {d}x} ,\\ {h_{13}}= & {} \int _0^1 {\delta (x - \beta )\psi _{nx}^2 \text {d}x} ,\\ {h_{21}}= & {} {h_{11}} ,\\ {h_{31}}= & {} \int _0^1 {E{I^ * }(x)\psi _n^2 \text {d}x} ,\\ {h_{32}}= & {} \int _0^1 {{\textstyle {{{\rho _b}{A_b}E{I^ * }(x)} \over {\rho (x)}}}\psi _n^2 \text {d}x},\\ {h_{33}}= & {} \int _0^1 {{\textstyle {\rho \over {{\rho _b}{A_b}}}}(1 - x)\psi _{nx}^2 \text {d}x},\\ {h_{34}}= & {} \int _0^1 {\int _x^1 {\delta (\xi - \beta )d\xi \psi _n^2 \text {d}x} } ,\\ {h_{41}}= & {} \frac{1}{2}\int _0^1 {E{I^ * }(x){\psi _k}{\psi _{lx}}{\psi _{mx}}{\psi _n} \text {d}x},\\ {h_{42}}= & {} \frac{1}{2}\int _0^1 {\delta (x - \beta )E{I^ * }(x){\psi _k}{\psi _{lx}}{\psi _{mx}}{\psi _n} \text {d}x} ,\\ {h_{43}}= & {} 3\int _0^1 {E{I^ * }(x){\psi _{kx}}{\psi _{lxx}}{\psi _{mxxx}}{\psi _n} \text {d}x} \\&+ \int _0^1 {E{I^ * }(x){\psi _{kxx}}{\psi _{lxx}}{\psi _{mxx}}{\psi _n} \text {d}x} ,\\ {h_{51}}= & {} \int _0^1 {\left\{ {\int _x^1 {\left( {\int _0^\xi {{\psi _{l\eta }}{\psi _{m\eta }}d\eta } } \right) d\xi } } \right\} {\textstyle {{\rho (x)} \over {{\rho _b}{A_b}}}}{\psi _{kx}}{\psi _{nx}}\text {d}x} ,\\ {h_{52}}= & {} \left( {\int _0^\beta {{\psi _{lx}}{\psi _{mx}}\text {d}x} } \right) \left( {\int _0^\beta {{\psi _{kx}}{\psi _{nx}} \text {d}x} } \right) ,\\ {h_{53}}= & {} {\left\{ {{\psi _{kx}}{\psi _{lx}}{\psi _{mx}}{\psi _{nx}}} \right\} _{x = \beta }},\,\,{h_{61}} = {h_{51}}\\ {h_{62}}= & {} \int _0^1 {{\textstyle {1 \over 2}}{\textstyle {{\rho (x)} \over {{\rho _b}{A_b}}}}{\psi _{kx}}{\psi _{lx}}{\psi _{mx}}{\psi _n}\text {d}x}\\&- \int _0^1 {{\textstyle {{\rho (x)} \over {{\rho _b}{A_b}}}}{\psi _{kx}}{\psi _{lxx}}\left( {\int _x^1 {{\psi _m}d\xi } } \right) \text {d}x} \\ {h_{63}}= & {} {h_{52}},\,\,{h_{65}} = 0.5{h_{53}},\\ {h_{64}}= & {} {\textstyle {1 \over 2}}{\left\{ {{\psi _{kx}}{\psi _{lx}}{\psi _m}{\psi _{nx}}} \right\} _{x = \beta }} \\&- {\psi _m}(\beta )\int _0^\beta {{\psi _{kx}}{\psi _{lxx}}{\psi _n}\text {d}x} \\ \zeta _n^*= & {} \frac{{c{h_{21}}}}{{2\epsilon {\hbar _n}{{\rho _b}{A_b}} \theta _1 }};{\hbar _n} = {h_{11}} + \mu {h_{12}} + J{\lambda ^2}{h_{13}},\\ \theta _n^{2}= & {} \frac{{\kappa _n^4({h_{31}} + \mu {h_{32}})}}{{{{\rho _b}{A_b}} {L^4}{\hbar _n}}} - \frac{{g({h_{33}} + \mu {h_{34}})}}{{L{\hbar _n}}},\\ F_{nm}= & {} F_{nm}^* \frac{\varGamma }{\epsilon } = \frac{{{\Omega ^2}{\varGamma }{z_r}}}{{\epsilon \theta _1^{2}{\hbar _n}L}}({h_{33}} + \mu {h_{34}}),\\ \alpha _{klm}^n= & {} \frac{{{\lambda ^2}}}{{\epsilon {{\rho _b}{A_b}} {L^4}{\hbar _n}\theta _1^{2}}}\left\{ {\kappa _k^4\left( {{h_{41}} + \mu {h_{42}}} \right) + {h_{43}}} \right\} ,\\ \beta _{klm}^n= & {} \frac{{{\lambda ^2}}}{{\epsilon {\hbar _n}}}\left\{ {{h_{51}} + \mu {h_{52}} + J{\lambda ^2}{h_{53}}} \right\} ,\\ \gamma _{klm}^n= & {} \frac{{{\lambda ^2}}}{{\epsilon {\hbar _n}}}\left\{ {{h_{61}} - {h_{62}} + \mu \left( {{h_{63}} - {h_{64}}} \right) + J{\lambda ^2}{h_{65}}} \right\} \\ {\alpha _{enj}}= & {} {\alpha _{nj}} + {\beta _{en}} + {\gamma _{en}},\\ {\alpha _{nj}}= & {} \left\{ {\begin{array}{*{20}{c}} {3\alpha _{nnn}^n}&{}{{\mathrm{for}} j = n}\\ {2(\alpha _{njj}^n + \alpha _{jjn}^n + \alpha _{jnj}^n)}&{}{{\mathrm{for}} j \ne n} \end{array}} \right\} \\ {\beta _{nj}}= & {} \left\{ {\begin{array}{*{20}{c}} {\omega _n^2\beta _{nnn}^n}&{}{{\mathrm{for}} j = n}\\ {2\omega _j^2\beta _{njj}^n}&{}{{\mathrm{for}} j \ne n} \end{array}} \right\} \\ {\gamma _{nj}}= & {} \left\{ {\begin{array}{*{20}{c}} { - 3\omega _n^2\gamma _{nnn}^n}&{}{;j = n}\\ { - 2\left\{ {\omega _j^2\left( {\gamma _{jnj}^n + \gamma _{njj}^n} \right) + \omega _n^2\gamma _{jjn}^n} \right\} }&{}{;j \ne n} \end{array}} \right\} \\ Q_1^*= & {} \alpha _{121}^1 + \alpha _{211}^1 + \alpha _{112}^1 + {\omega _1}{\omega _2}\left( {\beta _{121}^1 + \beta _{112}^1} \right) \\&- \omega _1^2\beta _{211}^1 - \left\{ {\omega _1^2\left( {\gamma _{211}^1 + \gamma _{121}^1} \right) + \omega _2^2\gamma _{112}^1} \right\} ,\\ Q_2^*= & {} \alpha _{111}^1 - \omega _1^2\left( {\beta _{111}^1 + \gamma _{111}^1} \right) . \end{aligned}$$

Other parameters are defined as follows:

$$\begin{aligned} {z_r}= & {} 1\,{\mathrm{mm}},\,\,{c = 1\,{\mathrm{Ns - m}}{{\mathrm{m}}^{ - 2}}},\,\,{\mu = 3.6},\\ J= & {} 0.0366,\,\,{\beta = 0.27},\,\,{\lambda = 0.1}\\ {\kappa _1}= & {} {\mathrm{1}}{\mathrm{.791}},\,\,{{\kappa _2} = {\mathrm{3}}{\mathrm{.244}}},\,\,{\epsilon = 0.001},\,\,{{\omega _1} = 1},\\ {\omega _2}= & {} 3.013 \\ {\alpha _{{\mathrm{e11}}}}= & {} - {\mathrm{9}}{\mathrm{.306}},\,\,{{\alpha _{{\mathrm{e12}}}}{\mathrm{= 9}}{\mathrm{.312}}},\,\,{{\alpha _{{\mathrm{e21}}}}{\mathrm{= 60}}{\mathrm{.12}}},\\&{{\alpha _{{\mathrm{e22}}}} - {\mathrm{255}}{\mathrm{.7}}}\\ {f_{{\mathrm{11}}}}= & {} 0 {\mathrm{.033}},\,\,{{f_{{\mathrm{12}}}}{\mathrm{= 0}}{\mathrm{.0124}}},\,\,{{f_{21}}{\mathrm{= 0}}{\mathrm{.0358}}},\\ {f_{{\mathrm{22}}}}= & {} {\mathrm{0}}{\mathrm{.0852}}\\ Q_1^ *= & {} - {\mathrm{10}}{\mathrm{.12}},\,\,{Q_2^ * = - 37.4},\,\,{{\zeta _{\mathrm{1}}}{\mathrm{= 3}}{\mathrm{.126}}{\textstyle {\nu \over \epsilon }}},\\ {\zeta _{\mathrm{2}}}= & {} {\mathrm{1}}{\mathrm{.267}}{\textstyle {\nu \over \epsilon }}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, A., Dwivedy, S.K. Dynamic analysis of piezoelectric energy harvester under combination parametric and internal resonance: a theoretical and experimental study. Nonlinear Dyn 101, 2107–2129 (2020). https://doi.org/10.1007/s11071-020-05931-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05931-w

Keywords

Navigation