Skip to main content
Log in

Initial offset boosting coexisting attractors in memristive multi-double-scroll Hopfield neural network

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Memristors are widely considered to be promising candidates to mimic biological synapses. In this paper, by introducing a non-ideal flux-controlled memristor model into a Hopfield neural network (HNN), a novel memristive HNN model with multi-double-scroll attractors is constructed. The parity of the number of double scrolls can be flexibly controlled by the internal parameters of the memristor. Through theoretical analysis and numerical simulation, various coexisting attractors and amplitude control are observed. Particularly, the interesting and rare phenomenon of the memristor initial offset boosting coexisting dynamics is discovered, in which the initial offset boosting coexisting double-scroll attractors with banded attraction basins are distributed in a line along the boosting route with the variation of the memristor initial condition. In addition, it is also found that the number of the initial offset boosting coexisting double-scroll attractors is closely related to the total number of scrolls and ultimately tends to infinity with increasing the total number of scrolls, meaning the emergence of extreme multistability. Then, the random performance of the initial offset boosting coexisting double-scroll attractors is tested by the NIST test suite. Moreover, an encryption scheme based on them is also proposed. The obtained results show that they have excellent randomness and are suitable for image encryption application. Finally, numerical simulation results are well demonstrated by circuit experiments, showing the feasibility of the designed memristive multi-double-scroll HNN model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Preissl, H., Lutzenberger, W., Pulvermuller, F.: Is there chaos in the brain? Behav. Brain Sci. 19(2), 307–308 (1996)

    MATH  Google Scholar 

  2. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  3. Ma, J., Zhang, G., Hayat, T., Ren, G.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95(2), 1585–1598 (2019)

    Google Scholar 

  4. Van Straaten, E.C., Stam, C.J.: Structure out of chaos: functional brain network analysis with EEG, MEG, and functional MRI. Eur. Neuropsychopharmacol. 23(17), 7–18 (2013)

    Google Scholar 

  5. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81(10), 3088–3092 (1984)

    MATH  Google Scholar 

  6. Kapitaniak, T., Jafari, S.: Nonlinear effects in life sciences. Eur. Phys. J.-Spec. Top. 227(10), 693–696 (2018)

    Google Scholar 

  7. Njitacke, Z.T., Kengne, J.: Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: coexistence of multiple attractors and remerging Feigenbaum trees. AEU—Int. J. Electron. Commun. 93(9), 242–252 (2018)

    Google Scholar 

  8. Rajagopal, K., Munoz-Pacheco, J.M., Pham, V.T., Hoang, D.V., Alsaadi, F.E.: A Hopfield neural network with multiple attractors and its FPGA design. Eur. Phys. J. Spec. Top. 227(7–9), 811–820 (2018)

    Google Scholar 

  9. Yang, X.S., Huang, Y.: Complex dynamics in simple Hopfield neural networks. Chaos 16(3), 033114 (2006)

    MATH  Google Scholar 

  10. Zheng, P., Tang, W., Zhang, J.: Letters: Some novel double-scroll chaotic attractors in Hopfield networks. Neurocomputing 73(10), 2280–2285 (2010)

    Google Scholar 

  11. Yang, X., Yuan, Q.: Letters: chaos and transient chaos in simple Hopfield neural networks. Neurocomputing 69(1), 232–241 (2005)

    Google Scholar 

  12. Hu, X., Liu, C., Liu, L., Ni, J., Yao, Y.: Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn. 91(3), 1541–1554 (2018)

    Google Scholar 

  13. Li, Q., Tang, S., Zeng, H., Zhou, T.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78(2), 1087–1099 (2014)

    MATH  Google Scholar 

  14. Li, Q., Yang, X., Yang, F.: Letter: hyperchaos in Hopfield-type neural networks. Neurocomputing 67(8), 275–280 (2005)

    Google Scholar 

  15. Njitacke, Z.T., Isaac, S.D., Kengne, J., Negou, A.N., Leutcho, G.D.: Extremely rich dynamics from hyperchaotic Hopfield neural network: hysteretic dynamics, parallel bifurcation branches, coexistence of multiple stable states and its analog circuit implementation. Eur. Phys. J. Spec. Top. 229(6–7), 1133–1154 (2020)

    Google Scholar 

  16. Danca, M., Kuznetsov, N.V.: Hidden chaotic sets in a Hopfield neural system. Chaos, Solitons Fractals 103(10), 144–150 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Pham, V.T., Volos, C., Jafari, S., Wang, X., Vaidyanathan, S.: Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron. Adv. Mater. Rapid Commun. 8(11–12), 1–7 (2014)

    Google Scholar 

  18. Parastesh, F., Jafari, S., Azarnoush, H., Hatef, B., Namazi, H., Dudkowski, D.: Chimera in a network of memristor-based Hopfield neural network. Eur. Phys. J. Spec. Top. 228(10), 2023–2033 (2019)

    Google Scholar 

  19. Zheng, Y.G., Wang, Z.H.: Relaxation oscillation and attractive basins of a two-neuron Hopfield network with slow and fast variables. Nonlinear Dyn. 70(2), 1231–1240 (2012)

    MathSciNet  Google Scholar 

  20. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Google Scholar 

  21. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  22. He, S.B., Sun, K.H., Peng, Y.X., Wang, L.C.: Modeling of discrete fracmemristor and its application. AIP Adv. 10(1), 015332 (2020)

    Google Scholar 

  23. Peng, Y.X., Sun, K.H., He, S.B.: A discrete memristor model and its application in Hénon map. Chaos, Solitons Fractals 137(8), 109873 (2020)

    MathSciNet  Google Scholar 

  24. Varshney, V., Sabarathinam, S., Prasad, A., Thamilmaran, K.: Infinite number of Hidden attractors in memristor-based autonomous duffing oscillator. Int. J. Bifurc. Chaos 28(1), 1850013 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Li, H., Wang, L., Duan, S.: A memristor-based scroll chaotic system-design, analysis and circuit implementation. Int. J. Bifurc. Chaos 24(7), 1450099 (2014)

    MATH  Google Scholar 

  26. Wang, G., Zang, S., Wang, X., Yuan, F., Iu, H.H.C.: Memcapacitor model and its application in chaotic oscillator with memristor. Chaos 27(1), 013110 (2017)

    MATH  Google Scholar 

  27. Kengne, J., Leutcho, G.D., Telem, A.N.: Reversals of period doubling, coexisting multiple attractors, and offset boosting in a novel memristive diode bridge-based hyperjerk circuit. Analog Integr. Circuits Signal Process 101(3), 379–399 (2019)

    Google Scholar 

  28. Zhou, L., Wang, C., Zhang, X., Yao, W.: Various attractors, coexisting attractors and antimonotonicity in a simple fourth-order memristive twin-T oscillator. Int. J. Bifurc. Chaos 28(4), 1850050 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Ye, X., Mou, J., Luo, C., Wang, Z.: Dynamics analysis of Wien-bridge hyperchaotic memristive circuit system. Nonlinear Dyn. 92(3), 923–933 (2018)

    Google Scholar 

  30. Peng, G., Min, F.: Multistability analysis, circuit implementations and application in image encryption of a novel memristive chaotic circuit. Nonlinear Dyn. 90(3), 1607–1625 (2017)

    Google Scholar 

  31. Jahanshahi, H., Yousefpour, A., Munoz-Pacheco, J.M., Kacar, S., Pham, V.T., Alsaadi, F.E.: A new fractional-order hyperchaotic memristor oscillator: dynamic analysis, robust adaptive synchronization, and its application to voice encryption. Appl. Math. Comput. 383(10), 125310 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Wang, L., Dong, T., Ge, M.: Finite-time synchronization of memristor chaotic systems and its application in image encryption. Appl. Math. Comput. 347(4), 293–305 (2019)

    MATH  Google Scholar 

  33. Wang, L., Wang, X., Duan, S., Li, H.: A spintronic memristor bridge synapse circuit and the application in memrisitive cellular automata. Neurocomputing 167(11), 346–351 (2015)

    Google Scholar 

  34. Wang, C., Xiong, L., Sun, J., Yao, W.: Memristor-based neural networks with weight simultaneous perturbation training. Nonlinear Dyn. 95(4), 2893–2906 (2019)

    Google Scholar 

  35. Wang, C., Lv, M., Alsaedi, A., Ma, J.: Synchronization stability and pattern selection in a memristive neuronal network. Chaos 27(11), 113108 (2017)

    MathSciNet  Google Scholar 

  36. Zhang, Y., Shen, Y., Wang, X., Cao, L.: A novel design for memristor-based logic switch and crossbar circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 62(5), 1402–1411 (2015)

    Google Scholar 

  37. Bao, B., Qian, H., Xu, Q., Chen, M., Wang, J., Yu, Y.: Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front. Comput. Neurosci. 11(8), 81 (2017)

    Google Scholar 

  38. Xu, Q., Song, Z., Bao, H., Chen, M., Bao, B.: Two-neuron-based non-autonomous memristive Hopfield neural network: numerical analyses and hardware experiments. AEU-Int. J. Electron. Commun. 96(11), 66–74 (2018)

    Google Scholar 

  39. Chen, C., Chen, J., Bao, H., Chen, M., Bao, B.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95(4), 3385–3399 (2019)

    MATH  Google Scholar 

  40. Chen, C., Bao, H., Chen, M., Xu, Q., Bao, B.: Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: numerical simulations and breadboard experiments. AEU-Int. J. Electron. Commun. 111(11), 152894 (2019)

    Google Scholar 

  41. Njitacke, Z.T., Kengne, J., Fotsin, H.B.: A plethora of behaviors in a memristor based Hopfield neural networks (HNNs). Int. J. Dyn. Control 7(1), 36–52 (2019)

    MathSciNet  Google Scholar 

  42. Lin, H., Wang, C., Tan, Y.: Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99(3), 2369–2386 (2020)

    Google Scholar 

  43. Xia, X., Zeng, Y., Li, Z.: Coexisting multiscroll hyperchaotic attractors generated from a novel memristive jerk system. Pramana 91(6), 1–14 (2018)

    Google Scholar 

  44. Adhikari, S.P., Sah, M.P., Kim, H., Chua, L.O.: Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 3008–3021 (2013)

    Google Scholar 

  45. Bersini, H.: The frustrated and compositional nature of chaos in small Hopfield networks. Neural Netw. 11(6), 1017–1025 (1998)

    Google Scholar 

  46. Silva, C.P.: Shil’nikov’s theorem—a tutorial. IEEE Trans. Circuits Syst. I Regul. Pap. 40(10), 675–682 (1993)

    MATH  Google Scholar 

  47. Carbajal-Gómez, V.H., Sánchez-López, C.: Determining accurate Lyapunov exponents of a multiscroll chaotic attractor based on SNFS. Nonlinear Dyn. 98(11), 2389–2402 (2019)

    MATH  Google Scholar 

  48. Sun, K., Sprott, J.C.: Periodically forced chaotic system with signum nonlinearity. Int. J. Bifurc. Chaos 20(5), 1499–1507 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Li, C., Sprott, J.C.: Multistability in the Lorenz system: a broken butterfly. Int. J. Bifurc. Chaos 24(10), 1450131 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Njitacke, Z.T., Mogue, R.L., Kengne, J., Kountchou, M., Fotsin, H.B.: Hysteretic dynamics, space magnetization and offset boosting in a third-order memristive system. Iran. J. Sci. Technol.-Trans. Electr. Eng. 44(1), 1–17 (2020)

    Google Scholar 

  51. Breakspear, M.: Dynamic models of large-scale brain activity. Nat. Neurosci. 20(3), 340–352 (2017)

    Google Scholar 

  52. Li, C., Wang, J., Hu, W.: Absolute term introduced to rebuild the chaotic attractor with constant Lyapunov exponent spectrum. Nonlinear Dyn. 28(4), 575–587 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Akgul, A., Li, C., Pehlivan, I.: Amplitude control analysis of a four-wing chaotic attractor, its electronic circuit designs and microcontroller-based random number generator. J. Circuits, Syst. Comput. 26(12), 1750190 (2017)

    Google Scholar 

  54. Wang, N., Li, C., Bao, H., Chen, M., Bao, B.: Generating multi-scroll Chua’s attractors via simplified piecewise-linear Chua’s diode. IEEE Trans. Circuits Syst. I Regul. Pap. 66(12), 4767–4779 (2019)

    Google Scholar 

  55. Li, C., Sprott, J.C., Yuan, Z., Li, H.: Constructing chaotic systems with total amplitude control. Int. J. Bifurc. Chaos 25(10), 1530025 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Yuan, F., Deng, Y., Li, Y., Wang, G.: The amplitude, frequency and parameter space boosting in a memristor-meminductor-based circuit. Nonlinear Dyn. 96(1), 389–405 (2019)

    MATH  Google Scholar 

  57. Yuan, F., Li, Y.: A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor. Chaos 29(10), 101101 (2019)

    MathSciNet  MATH  Google Scholar 

  58. Wu, H., Ye, Y., Chen, M., Xu, Q., Bao, B.: Periodically switched memristor initial boosting behaviors in memristive hypogenetic Jerk system. IEEE Access 7(10), 145022–145029 (2019)

    Google Scholar 

  59. Lai, Q., Nestor, T., Kengne, J., Zhao, X.: Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria. Chaos, Solitons Fractals 107(2), 92–102 (2018)

    MathSciNet  MATH  Google Scholar 

  60. Lai, Q., Akgul, A., Zhao, X., Pei, H.: Various types of coexisting attractors in a new 4D autonomous chaotic system. Int. J. Bifurc. Chaos 27(9), 1750142 (2017)

    MathSciNet  MATH  Google Scholar 

  61. Zhang, S., Wang, X.P., Zeng, Z.G.: A simple no-equilibrium chaotic system with only one signum function for generating multidirectional variable hidden attractors and its hardware implementation. Chaos 30(5), 053129 (2020)

    MathSciNet  MATH  Google Scholar 

  62. Vaidyanathan, S., Pehlivan, I., Dolvis, L.G., Jacques, K., Alcin, M., Tuna, M., Koyuncu, I.: A novel ANN-based four-dimensional two-disk hyperchaotic dynamical system, bifurcation analysis, circuit realisation and FPGA-based TRNG implementation. J. Comput. Appl. Technol. 62(1), 1–20 (2020)

    Google Scholar 

  63. Yu, F., Zhang, Z., Liu, L., Shen, H., Huang, Y., Shi, C., Xu, Q.: Secure communication scheme based on a new 5D multistable four-wing memristive hyperchaotic system with disturbance inputs. Complexity 2020(1), 1–16 (2020)

    MATH  Google Scholar 

  64. Ye, X., Wang, X., Gao, S., Mou, J., Wang, Z.: A new random diffusion algorithm based on the multi-scroll Chua’s chaotic circuit system. Opt. Lasers Eng. 127(4), 105905 (2020)

    Google Scholar 

  65. Li, C., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545–1551 (2014)

    Google Scholar 

  66. Nardo, L.G., Nepomuceno, E.G., Ariasgarcia, J., Butusov, D.N.: Image encryption using finite-precision error. Chaos, Solitons Fractals 123(6), 69–78 (2019)

    MATH  Google Scholar 

  67. Wu, Q., Hong, Q., Liu, X., Wang, X., Zeng, Z.: A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors. Chaos, Solitons Fractals 134(5), 109727 (2020)

    MathSciNet  Google Scholar 

  68. Farhan, A.K., Alsaidi, N.M., Maolood, A.T., Nazarimehr, F., Hussain, I.: Entropy analysis and image encryption application based on a new chaotic system crossing a cylinder. Entropy 21(10), 1–14 (2019)

    MathSciNet  Google Scholar 

  69. Ortega-Torres, E., Sánchez-López, C., Mendoza-López, J.: Frequency behavior of saturated nonlinear function series based on opamps. Rev. Mex. Fís. 59(6), 504–510 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief, the Associate Editor and the anonymous reviewers for their insightful suggestions and constructive comments. This work was supported by the grants from the National Natural Science Foundation of China under 61876209 and the National Key Research and Development Program of China under 2017YFC1501301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zheng, J., Wang, X. et al. Initial offset boosting coexisting attractors in memristive multi-double-scroll Hopfield neural network . Nonlinear Dyn 102, 2821–2841 (2020). https://doi.org/10.1007/s11071-020-06072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06072-w

Keywords

Navigation