Skip to main content
Log in

Nonlinear modeling of combined galloping and vortex-induced vibration of square sections under flow

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose a model for the transverse oscillation of a square-section cylinder under flow. The fluctuating transverse force due to vortex shedding is represented using a coupled nonlinear wake oscillator, while the unsteady force for galloping caused by the varying incidence angle effects is modelled using the quasi-steady approach. First, we analytically investigate the lift behavior and phase angle variation of the square cylinder under forced vibrations. Comparison with experimental data is used to determine the form of the coupling terms and its values. The present model shows advantages in predicting the phase angle, and it successfully captures the change in sign of the phase. Second, the proposed model is directly applied in predicting free oscillation cases without any tuning. The dynamical behaviors predicted by this model are compared with published experiments under different Scruton numbers, and reasonable agreement can be found. The results indicate that the model can not only be applied in simulating the “pure galloping” and “pure VIV,” but also is able to capture the interactions of VIV and galloping, including combined and separate VIV-galloping motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blevins, R.D.: Flow-Induced Vibration. Krieger Publishing Company, Florida (1977)

    MATH  Google Scholar 

  2. Parkinson, G.V.: Phenomena and modelling of flow-induced vibrations of bluff bodies. Prog. Aerosp. Sci. 26(2), 169–224 (1989)

    Article  MathSciNet  Google Scholar 

  3. Bearman, P.W.: Vortex shedding from oscillating bluff bodies. Ann. Rev. Fluid Mech. 16(1), 195–222 (1984)

    Article  Google Scholar 

  4. Williamson, C.H.K., Govardhan, R.: Vortex-induced vibrations. Ann. Rev. Fluid Mech. 36(1), 413–455 (2004)

    Article  MathSciNet  Google Scholar 

  5. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19(4), 389–447 (2004)

    Article  Google Scholar 

  6. Lucor, D., Foo, J., Karniadakis, G.E.: Vortex mode selection of a rigid cylinder subject to VIV at low mass-damping. J. Fluids Struct. 20(4), 483–503 (2005)

    Article  Google Scholar 

  7. Hartlen, R.T., Currie, I.G.: Lift-oscillator model of vortex-induced vibration. J. Eng. Mech. Div. EM5, 577–591 (1970)

    Article  Google Scholar 

  8. Skop, R.A., Balasubramanian, S.: A new twist on an old model for vortex-excited vibrations. J. Fluids Struct. 11(4), 395–412 (1997)

    Article  Google Scholar 

  9. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders. Nonlinear Dyn. 70(2), 1377–1388 (2012)

    Article  MathSciNet  Google Scholar 

  10. Facchinetti, M.L., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19(2), 123–140 (2004)

    Article  Google Scholar 

  11. Facchinetti, M.L., de Langre, E., Biolley, F.: Vortex-induced travelling waves along a cable. Eur. J. Mech. B/Fluids 23(1), 199–208 (2004)

    Article  Google Scholar 

  12. Violette, R., de Langre, E., Szydlowski, J.: Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with dns and experiments. Comput. Struct. 85(11–14), 1134–1141 (2007)

    Article  Google Scholar 

  13. Grouthier, C., Michelin, S., Bourguet, R., Modarres-Sadeghi, Y., de Langre, E.: On the efficiency of energy harvesting using vortex-induced vibrations of cables. J. Fluids Struct. 49, 427–440 (2014)

    Article  Google Scholar 

  14. Zanganeh, H., Srinil, N.: Three-dimensional VIV prediction model for a long flexible cylinder with axial dynamics and mean drag magnifications. J. Fluids Struct. 66, 127–146 (2016)

    Article  Google Scholar 

  15. Gabbai, R.D., Benaroya, H.: An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J. Sound Vib. 282(3–5), 575–616 (2005)

    Article  Google Scholar 

  16. Tamura, Y., Matsui, G.: Wake-oscillator model of vortex-induced oscillation of circular cylinder. In: Proceedings of the 5th international conference on wind engineering, pp. 1085–1094, Bowness-on-Windermere, (1980)

  17. Benaroya, H., Gabbai, R.D.: Modelling vortex-induced fluid-structure interaction. Philos. Trans. A Math. Phys. Eng. Sci. 366(1868), 1231–74 (2008)

    MathSciNet  Google Scholar 

  18. Meliga, P., Chomaz, J.-M.: An asymptotic expansion for the vortex-induced vibrations of a circular cylinder. J. Fluid Mech. 671, 137–167 (2011)

    Article  MathSciNet  Google Scholar 

  19. Parkinson, G.V., Smith, J.D.: The square prism as an aeroelastic non-linear oscillator. Q. J. Mech. Appl. Math. 17(2), 225–239 (1964)

    Article  Google Scholar 

  20. Joly, A., Etienne, S., Pelletier, D.: Galloping of square cylinders in cross-flow at low reynolds numbers. J. Fluids Struct. 28, 232–243 (2012)

    Article  Google Scholar 

  21. Norberg, C.: Flow around rectangular cylinders: pressure forces and wake frequencies. J. Wind Eng. Ind. Aerodyn. 49(1), 187–196 (1993)

    Article  Google Scholar 

  22. Wawzonek, M. A.: Aeroelastic behavior of square section prisms in uniform flow. PhD thesis, University of British Columbia (1979)

  23. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70(2), 1355–1363 (2012)

    Article  MathSciNet  Google Scholar 

  24. Andrianne, T., Aryoputro, R.P., Laurent, P., Colson, G., Amandolèse, X., Hémon, P.: Energy harvesting from different aeroelastic instabilities of a square cylinder. J. Wind Eng. Ind. Aerodyn. 172, 164–169 (2018)

    Article  Google Scholar 

  25. Bouclin, D. N.: Hydroelastic oscillations of square cylinders. PhD thesis, University of British Columbia (1979)

  26. Corless, R.M., Parkinson, G.V.: A model of the combined effects of vortex-induced oscillation and galloping. J. Fluids Struct. 2(3), 203–220 (1988)

    Article  Google Scholar 

  27. Tamura, Y., Shimada, K.: A mathematical model for the transverse oscillations of square cylinders. In: Proceedings of the 1st international conference on flow induced vibrations, pp. 267–276, Bowness-on-Windermere (1987)

  28. Mannini, C., Massai, T., Marra, A.M., Bartoli, G.: Modelling the interaction of VIV and galloping for rectangular cylinders. In: The 14th international conference on wind engineering, pp. 1–20, Porto Alegre (2015)

  29. Liu, Y.Z., Ma, C.M., Li, Q.S., Yan, B.W., Liao, H.L.: A new modeling approach for transversely oscillating square-section cylinders. J. Fluids Struct. 81, 492–513 (2018)

    Article  Google Scholar 

  30. Nayfeh, A.H.: Introduction to Perturbation Techniques. John Wiley & Sons, New Jersey (2011)

    MATH  Google Scholar 

  31. de Langre, E.: Frequency lock-in is caused by coupled-mode flutter. J. Fluids Struct. 22(6–7), 783–791 (2006)

    Article  Google Scholar 

  32. Li, X., Lyu, Z., Kou, J., Zhang, W.: Mode competition in galloping of a square cylinder at low reynolds number. J. Fluid Mech. 867, 516–555 (2019)

    Article  MathSciNet  Google Scholar 

  33. Bishop, R.E.D., Hassan, A.Y.: The lift and drag forces on a circular cylinder in a flowing fluid. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 277(1368), 32–50 (1964)

    Google Scholar 

  34. Luo, S.C., Bearman, P.W.: Predictions of fluctuating lift on a transversely oscillating square-section cylinder. J. Fluids Struct. 4(2), 219–228 (1990)

    Article  Google Scholar 

  35. Carassale, A., Freda, L., Banfi, L.: Motion excited forces acting on a square prism: a qualitative analysis. In: The 14th international conference on wind engineering, Porto Alegre (2015)

  36. Freda, A., Carassale, L., Piccardo, G.: Aeroelastic crosswind response of sharp-edge square sections: experiments versus theory. In: The 14th international conference on wind engineering, 01 (2015)

  37. Carassale, L., Freda, A., Marrè-Brunenghi, M.: Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners. J. Fluids Struct. 44, 195–204 (2014)

    Article  Google Scholar 

  38. Bearman, P.W., Gartshore, I.S., Maull, D.J., Parkinson, G.V.: Experiments on flow-induced vibration of a square-section cylinder. J. Fluids Struct. 1(1), 19–34 (1987)

    Article  Google Scholar 

  39. Cheng, L., Zhou, Y., Zhang, M.M.: Perturbed interaction between vortex shedding and induced vibration. J. Fluids Struct. 17(7), 887–901 (2003)

    Article  Google Scholar 

  40. Amandolèse, X., Hémon, P.: Vortex-induced vibration of a square cylinder in wind tunnel. Comptes Rendus Méc. 338(1), 12–17 (2010)

  41. Nakamura, Y., Mizota, T.: Unsteady lifts and wakes of oscillating rectangular prisms. J. Eng. Mech. Div. 101, 855–871 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel de Langre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P., Hémon, P., Pan, G. et al. Nonlinear modeling of combined galloping and vortex-induced vibration of square sections under flow. Nonlinear Dyn 103, 3113–3125 (2021). https://doi.org/10.1007/s11071-020-06078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06078-4

Keywords

Navigation