Skip to main content
Log in

Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is well known that most classical test functions to solve nonlinear partial differential equations can be constructed via single hidden layer neural network model by using Bilinear Neural Network Method (BNNM). In this paper, the neural network model of test function for the (3+1)-dimensional Jimbo–Miwa equation is extended to the “4-2-3” model. By giving some specific activation functions, new test function is constructed to obtain analytical solutions of the (3+1)-dimensional Jimbo–Miwa equation. Rogue wave solutions and the bright and dark solitons are obtained by giving some specific parameters. Via curve plots, three-dimensional plots, contour plots and density plots, dynamical characteristics of these waves are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    Article  MATH  Google Scholar 

  2. Xu, G.Q., Wazwaz, A.M.: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dyn. 101, 581–595 (2020)

    Article  Google Scholar 

  3. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Article  Google Scholar 

  4. Lan, Z.Z., Hu, W.Q., Guo, B.L.: General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation. Appl. Math. Modell. 73, 695–714 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xu, G.Q., Wazwaz, A.M.: Integrability aspects and localized wave solutions for a new (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 98, 1379–1390 (2019)

    Article  Google Scholar 

  6. Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the (2+ 1)-dimensional KdV equation with variable coefficients. Appl. Math. Comput. 321, 282–289 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Wazwaz, A.M., Xu, G.Q.: Kadomtsev-petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711–3716 (2020)

    Article  Google Scholar 

  8. Lan, Z.Z., Guo, B.L.: Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger–Boussinesq system in a homogeneous magnetized plasma. Nonlinear Dyn. 100, 3771–3784 (2020)

    Article  Google Scholar 

  9. McAnally, M., Ma, W.X.: An integrable generalization of the D-Kaup-Newell soliton hierarchy and its bi-Hamiltonian reduced hierarchy. Appl. Math. Comput. 323, 220–227 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Hu, B.B., Zhang, L., Xia, T.C., Zhang, N.: On the riemann-hilbert problem of the kundu equation. Appl. Math. Comput. 381, 125262 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Hu, B.B., Xia, T.C., Ma, W.X.: Riemann-hilbert approach for an initial-boundary value problem of the two-component modified korteweg-de vries equation on the half-line. Appl. Math. Comput. 332, 148–159 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Hu, B.B., Cheng Xia, T., Zhang, N., Bo Wang, J.: Initial-boundary value problems for the coupled higher-order nonlinear schrödinger equations on the half-line. Int. J. Nonlinear Sci. Num. 19(1), 83–92 (2018)

    Article  MATH  Google Scholar 

  13. Zhang, R.F., Bilige, S.D.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equatuon. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  14. Lan, Z.Z., Su, J.J.: Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 96, 2535–2546 (2019)

    Article  Google Scholar 

  15. Yin, H.M., Tian, B., Zhao, X.C., Zhang, C.R., Hu, C.C.: Breather-like solitons, rogue waves, quasi-periodic/chaotic states for the surface elevation of water waves. Nonlinear Dyn. 97, 21–31 (2019)

    Article  MATH  Google Scholar 

  16. Lan, Z.Z.: Rogue wave solutions for a higher-order nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 107, 106382 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yin, H.M., Tian, B., Zhang, C.R., Du, X.X., Zhao, X.C.: Optical breathers and rogue waves via the modulation instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system. Nonlinear Dyn. 97, 843–852 (2019)

    Article  MATH  Google Scholar 

  18. Ma, W.X., Yong, X.L., Zhang, H.Q.: Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 75, 289–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, W.X.: Lump and interaction solutions to linear (4+1)-dimensional PDEs. Acta Math. Sci. 39B(2), 498–508 (2019)

    Article  MathSciNet  Google Scholar 

  20. Hua, Y.F., Guo, B.L., Ma, W.X., Lü, X.: Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Modell. 74, 184–198 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, J.G.: Lump-type solutions and interaction solutions for the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation. Eur. Phys. J. Plus 134, 56 (2019)

    Article  Google Scholar 

  22. Lan, Z.Z.: Multi-soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear schrödinger equation. Appl. Math. Lett. 86, 243–248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wazwaz, A.M., Kaur, L.: Complex simplified hirota’s forms and lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-Sine-Gordon equation. Nonlinear Dyn. 95, 2209–2215 (2019)

    Article  MATH  Google Scholar 

  24. Lan, Z.Z.: Soliton and breather solutions for a fifth-order variable-coefficient nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 102, 106132 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Osman, M.S.: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation. Nonlinear Dyn. 96, 1491–1496 (2019)

    Article  MATH  Google Scholar 

  26. Ma, W.X.: Bilinear equations, Bell polynomials and linear superposition principle. J. Phys. Conf. Ser. 411, 012021 (2013)

    Article  Google Scholar 

  27. Gai, L.T., Ma, W.X., Li, M.C.: Lump-type solution and breather lump-kink interaction phenomena to a (3+1)-dimensional GBK equation based on trilinear form. Nonlinear Dyn. 100, 2715–2727 (2020)

    Article  Google Scholar 

  28. Liu, J.G.: Lump-type solutions and interaction solutions for the (2+1)-dimensional generalized fifth-order KdV equation. Appl. Math. Lett. 86, 36–41 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gai, L.T., Ma, W.X., Li, M.C.: Lump-type solutions, rogue wave type solutions and periodic lump-stripe interaction phenomena to a (3+1)-dimensional generalized breaking soliton equation. Phys. Lett. A 384, 126178 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, J.G., Zhu, W.H.: Various exact analytical solutions of a variable-coefficient Kadomtsev-Petviashvili equation. Nonlinear Dyn. 100, 2739–2751(2020)

  31. Liu, W., Wazwaz, A.M., Zhang, X.X.: High-order breathers, lumps, and semirational solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation. Phys. Scr. 94, 075203 (2019)

    Article  Google Scholar 

  32. Zhang, X.E., Chen, Y.: M-lump, high-order breather solutions and interaction dynamics of a generalized (2+1)-dimensional nonlinear wave equation. Nonlinear Dyn. 100, 2753–2765 (2020)

    Article  Google Scholar 

  33. Ghanbari, B., Mustafa, I., Rada, L.: Solitary wave solutions to the tzitzeica type equations obtained by a new efficient approach. J. Appl. Anal. Comput. 9, 568–589 (2019)

    MathSciNet  Google Scholar 

  34. Zhang, R.F., Bilige, S.D., Fang, T., Chaolu, T.: New periodic wave, cross-kink wave and the interaction phenomenon for the Jimbo–Miwa-like equation. Comput. Math. Appl. 78, 754–764 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ma, W.X.: Lump-type solutions to the (3+1)-dimensional Jimbo–Miwa equation. Int. J. Sci. Num. 17, 355–359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, Y.H., Wang, H., Dong, H.H., Zhang, H.S., Temuer, C.: Interaction solutions for a reduced extended (3+1)-dimensional Jimbo–Miwa equation. Nonlinear Dyn. 92, 487–497 (2018)

    Article  Google Scholar 

  37. Zhang, R.F., Bilige, S.D.: New interaction phenomenon and the periodic lump wave for the Jimbo–Miwa equation. Mod. Phys. Lett. B 33, 1950067 (2019)

    Article  MathSciNet  Google Scholar 

  38. Qi, F.H., Huang, Y.H., Wang, P.: Solitary-wave and new exact solutions for an extended (3+1)-dimensional Jimbo–Miwa-like equation. Appl. Math. Lett. 100, 106004 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Guo, H.D., Xia, T.C., Hu, B.B.: High-order lumps, high-order breathers and hybrid solutions for an extended (3+1)-dimensional Jimbo–Miwa equation in fluid dynamics. Nonlinear Dyn. 100, 601–614 (2020)

    Article  MATH  Google Scholar 

  40. Kuo, C.K., Ghanbari, B.: Resonant multi-soliton solutions to new (3+1)-dimensional Jimbo–Miwa equations by applying the linear superposition principle. Nonlinear Dyn. 96, 459–464 (2019)

    Article  MATH  Google Scholar 

  41. Liu, J.G., Zhu, W.H., Osman, M.S., Ma, W.X.: An explicit plethora of different classes of interactive lump solutions for an extension form of 3d-Jimbo–Miwa model. Eur. Phys. J. Plus 135, 412 (2020)

    Article  Google Scholar 

  42. Ma, W.X.: Generalized bilinear differential equations. Stud. Nonlinear Sci. 2(4), 140–144 (2011)

    Google Scholar 

  43. Hu, W.P., Deng, Z.C., Han, S.M., Zhang, W.R.: Generalized multi-symplectic integrators for a class of hamiltonian nonlinear wave pdes. J. Comput. Phys. 235, 394–406 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hu, W.P., Yu, L.J., Deng, Z.C.: Minimum control energy of spatial beam with assumed attitude adjustment target. Acta Mech. Solida Sin. 33, 51–60 (2020)

    Article  Google Scholar 

  45. Hu, W.P., Deng, Z.C., Wang, B., Ouyang, H.J.: Chaos in an embedded single-walled carbon nanotube. Nonlinear Dyn. 72, 389–398 (2013)

    Article  MathSciNet  Google Scholar 

  46. Hu, W.P., Deng, Z.C.: Interaction effects of DNA, RNA-polymerase, and cellular fluid on the local dynamic behaviors of DNA*. Appl. Math. Mech. -Engl. Ed. 41(4), 623–636 (2020)

    Article  MathSciNet  Google Scholar 

  47. Hu, W.P., Deng, Z.C.: Non-sphere perturbation on dynamic behaviors of spatial flexible damping beam. Acta Astronaut. 152, 196–200 (2018)

    Article  Google Scholar 

  48. Hu, W.P., Wang, Z., Zhao, Y.P., Deng, Z.C.: Symmetry breaking of infinite-dimensional dynamic system. Appl. Math. Lett. 103, 106207 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hu, W.P., Zhang, C.Z., Deng, Z.C.: Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs. Commun. Nonlinear Sci. Numer. Simulat. 84, 105199 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hu, W.P., Ye, J., Deng, Z.C.: Internal resonance of a flexible beam in a spatial tethered system. J. Sound Vib. 475, 115286 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos.: 61572095 and 61877007.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Run-Fa Zhang or Ming-Chu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RF., Li, MC. & Yin, HM. Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation. Nonlinear Dyn 103, 1071–1079 (2021). https://doi.org/10.1007/s11071-020-06112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06112-5

Keywords

Navigation