Skip to main content
Log in

Single-degree-of-freedom model of displacement in vortex-induced vibrations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In contrast to the approach of coupling a nonlinear oscillator that represents the lift force with the cylinder’s equation of motion to predict the amplitude of vortex-induced vibrations, we propose and show that the displacement can be directly predicted by a nonlinear oscillator without a need for a force model. The advantages of the latter approach include reducing the number of equations and, subsequently, the number of coefficients to be identified to predict displacements associated with vortex-induced vibrations. The implemented single-equation model is based on phenomenological representation of different components of the transverse force as required to initiate the vibrations and to limit their amplitude. Three different representations for specific flow and cylinder parameters yielding synchronization for Reynolds numbers between 104 and 114 are considered. The method of multiple scales is combined with data from direct numerical simulations to identify the parameters of the proposed models. The variations in these parameters with the Reynolds number, reduced velocity or force coefficient over the synchronization regime are determined. The predicted steady-state amplitudes are validated against those obtained from high-fidelity numerical simulations. The capability of the proposed models in assessing the performance of linear feedback control strategy in reducing the vibrations amplitude is validated with performance as determined from numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dai, H.L., Abdelkefi, A., Wang, L., Liu, W.B.: Time-delay feedback controller for amplitude reduction in vortex-induced vibrations. Nonlinear Dyn. 80, 59–70 (2015)

    Article  MathSciNet  Google Scholar 

  2. Mehmood, A., Nayfeh, A.H., Hajj, M.R.: Effects of a non-linear energy sink (nes) on vortex-induced vibrations of a circular cylinder. Nonlinear Dyn. 77, 667–680 (2014)

    Article  Google Scholar 

  3. Mehmood, A., Abdelkefi, A., Akhtar, I., Nayfeh, A.H., Nuhait, A., Hajj, M.R.: Linear and nonlinear active feedback controls for vortex-induced vibrations of circular cylinders. J. Vib. Control 20, 1137–1147 (2014)

    Article  Google Scholar 

  4. Kumar, R., Tumkur, R., Calderer, R., Masud, R., Pearlstein, A.J., Bergman, L.A., Vakakis, A.F.: Computational study of vortex-induced vibration of a sprung rigid circular cylinder with a strongly nonlinear internal attachment. J. Fluids Struct. 40, 214–232 (2013)

    Article  Google Scholar 

  5. Dongyang, C., Abbas, L.K., Guoping, W., Xiaoting, R., Marzocca, P.: Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (ness). Nonlinear Dyn. 94, 925–957 (2018)

    Article  Google Scholar 

  6. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. 99, 593–609 (2020)

    Article  Google Scholar 

  7. Mukundan, H., Modarres-Sadeghi, Y., Dahl, J.M., Hover, F.S., Triantafyllou, M.S.: Monitoring viv fatigue damage on marine risers. J. Fluids Struct. 25, 617–628 (2009)

    Article  Google Scholar 

  8. Thorsen, M.J., Svik, S., Larsen, C.M.: Fatigue damage from time domain simulation of combined in-line and cross-flow vortex-induced vibrations. Mar. Struct. 41, 200–222 (2015)

    Article  Google Scholar 

  9. Trim, A.D., Braaten, H., Lie, H., Tognarelli, M.A.: Experimental investigation of vortex-induced vibration of long marine risers. J. Fluids Struct. 21, 335–361 (2005)

    Article  Google Scholar 

  10. Alfosail, F.K., Younis, M.I.: Multifrequency excitation of an inclined marine riser under internal resonances. Nonlinear Dyn. 99, 149–171 (2020)

    Article  Google Scholar 

  11. Matsumoto, M., Yagi, T., Shigemura, Y., Tsushima, D.: Vortex-induced cable vibration of cable-stayed bridges at high reduced wind velocity. J. Wind Eng. Ind. Aerod. 89, 633–647 (2001)

    Article  Google Scholar 

  12. Zheng, C., Liu, Z., Wu, T., Wang, H., Wu, Y., Shi, X.: Experimental investigation of vortex-induced vibration of a thousand-meter-scale mega-tall building. J. Fluids Struct. 85, 94–109 (2019)

    Article  Google Scholar 

  13. Abdessattar, A.: Aeroelastic energy harvesting: A review. Int. J. Eng. Sci. 100, 112–135 (2016)

    Article  Google Scholar 

  14. Adhikari, S., Rastogi, A., Bhattacharya, B.: Piezoelectric vortex induced vibration energy harvesting in a random flow field. Smart Mater. Struct. 29, 035034 (2020)

    Article  Google Scholar 

  15. Mehmood, A., Abdelkefi, A., Hajj, M.R., Nayfeh, A.H., Akhtar, I., Nuhait, A.: Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 332, 4656–4667 (2013)

    Article  Google Scholar 

  16. Sarpkaya, T.: Fluid forces on oscillating cylinders. J. Waterw. Port C-ASCE 104, 275–290 (1978)

    Google Scholar 

  17. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19, 389–447 (2004)

    Article  Google Scholar 

  18. Griffin, O.M., Koopmann, G.H.: The vortex-excited lift and reaction forces on resonantly vibrating cylinders. J. Sound Vib. 54, 435–448 (1977)

    Article  Google Scholar 

  19. Bishop, R.E.D., Hassan, A.Y.: The lift and drag forces on a circular cylinder in a flowing fluid. Proc. R. Soc. A. 277, 32–50 (1964)

    Google Scholar 

  20. Hartlen, R.T., Currie, I.G.: Lift-oscillator model of vortex-induced vibration. J. Eng. Mech. 96, 577–591 (1970)

    Google Scholar 

  21. Skop, R.A., Griffin, O.M.: A model for the vortex-excited resonant response of bluff cylinders. J. Sound Vib. 27, 225–233 (1973)

    Article  Google Scholar 

  22. Iwan, W.D., Blevins, R.D.: A model for vortex induced oscillation of structures. J. Appl. Mech. 41, 581–586 (1974)

    Article  Google Scholar 

  23. Landl, R.: A mathematical model for vortex-excited vibrations of bluff bodies. J. Sound Vib. 42, 219–234 (1975)

    Article  Google Scholar 

  24. Nayfeh, A.H., Owis, F., Hajj, M.R.: A model for the coupled lift and drag on a circular cylinder. In: 19th Biennial Conference on Mechanical Vibration and Noise ASME Chicago, vol. 37033, pp. 1289–1296 (2003)

  25. Facchinetti, M.L., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19, 123–140 (2004)

    Article  Google Scholar 

  26. Yang, Q., Metrikine, A.V.: A wake oscillator model with nonlinear coupling for the vortex-induced vibration of a rigid cylinder constrained to vibrate in the cross-flow direction. J. Sound Vib. 469, 1115161 (2020)

    Google Scholar 

  27. Thorsen, M.J., Svik, S., Larsen, C.M.: A simplified method for time domain simulation of cross-flow vortex-induced vibrations. J. Fluids Struct. 49, 135–148 (2014)

    Article  Google Scholar 

  28. Goswami, I., Scanlan, R.H., Jones, N.P.: Vortex-induced vibration of circular cylinders. ii: New model. J. Eng. Mech. 119, 2288–2302 (1993)

    Article  Google Scholar 

  29. Gharib, M.R.: Vortex-induced vibration, absence of lock-in and fluid force deduction. PhD Dissertation, California Institute of Technology, Pasadena, CA, USA, (1999)

  30. Akhtar, I.: Parallel simulations, reduced-order modeling, and feedback control of vortex shedding using fluidic actuators. Ph.D. Dissertation, Virginia Tech, Blacksburg, VA, USA, (2008)

  31. Akhtar, I., Elyyan, M.: Higher-order spectral analysis to identify quadratic nonlinearities in fluid-structure interaction. Math. Probl. Eng. 2018. https://doi.org/10.1155/2018/2394124 (2018)

  32. Mehmood, A., Abdelkefi, A., Hajj, M.R., Akhtar, I.: On the onset of bifurcation and nonlinear characterization of vortex-induced vibrations under varying initial conditions. Nonlinear Dyn. 575–592, (2020)

  33. Anagnostopoulos, P., Bearman, P.W.: Response characteristics of a vortex-excited cylinder at low Reynolds numbers. J. Fluids Struct. 6, 39–50 (1992)

    Article  Google Scholar 

  34. Williamson, C.H.K., Govardhan, R.: A brief review of recent results in vortex-induced vibrations. J. Wind Eng. Ind. Aerod. 96, 713–735 (2008)

    Article  Google Scholar 

  35. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley Series in Nonlinear Science. Wiley, New York (1981)

  36. Hajj, M.R., Fung, J., Nayfeh, A.H., Fahey, S.O.: Damping identification using perturbation techniques and higher-order spectra. Nonlinear Dyn. 23, 189–203 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad R. Hajj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajj, M.R., Mehmood, A. & Akhtar, I. Single-degree-of-freedom model of displacement in vortex-induced vibrations. Nonlinear Dyn 103, 1305–1320 (2021). https://doi.org/10.1007/s11071-021-06209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06209-5

Keywords

Navigation