Skip to main content
Log in

Dark and bright soliton solutions and computational modeling of nonlinear regularized long wave model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, the authors simulate and study dark and bright soliton solutions of 1D and 2D regularized long wave (RLW) models. The RLW model occurred in various fields such as shallow-water waves, plasma drift waves, longitudinal dispersive waves in elastic rods, rotating flow down a tube, and the anharmonic lattice and pressure waves in liquid–gas bubble mixtures. First of all, the tanh–coth method is applied to obtain the soliton solutions of RLW equations, and thereafter, the approximation of finite domain interval is done by truncating the infinite domain interval. For computational modeling of the problems, a meshfree method based on local radial basis functions and differential quadrature technique is developed. The meshfree method converts the RLW model into a system of nonlinear ordinary differential equations (ODEs), then the obtained system of ODEs is simulated by the Runge–Kutta method. Further, the stability of the proposed method is discussed by the matrix technique. Finally, in numerical experiments, some problems are considered to check the competence and chastity of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abbaszadeh, M., Dehghan, M.: The two-grid interpolating element free Galerkin (TG-IEFG) method for solving Rosenau-regularized long wave (RRLW) equation with error analysis. Appl. Anal. 97(7), 1129–1153 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbaszadeh, M., Dehghan, M.: The interpolating element-free Galerkin method for solving Korteweg-de Vries-Rosenau-regularized long-wave equation with error analysis. Nonlinear Dyn. 96(2), 1345–1365 (2019)

    Article  MATH  Google Scholar 

  3. Abbaszadeh, M., Dehghan, M.: An upwind local radial basis functions-differential quadrature (RBFS-DQ) technique to simulate some models arising in water sciences. Ocean Eng. 197, 106844 (2020)

    Article  Google Scholar 

  4. Avrin, J., Goldstein, J.A.: Global existence for the Benjamin-Bona-theory equation in arbitrary dimensions. Nonlinear Anal. 9(8), 861–865 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: RBF-FD formulas and convergence properties. J. Comput. Phys. 229(22), 8281–8295 (2010)

    Article  MATH  Google Scholar 

  6. Bellman, R., Casti, J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34(2), 235–238 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 272(1220), 47–78 (1972)

    MathSciNet  MATH  Google Scholar 

  8. Biswas, A.: Solitary waves for power-law regularized long-wave equation and r (m, n) equation. Nonlinear Dyn. 59(3), 423–426 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bona, J., Pritchard, W., Scott, L.: An evaluation of a model equation for water waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 302(1471), 457–510 (1981)

    MathSciNet  MATH  Google Scholar 

  10. Bona, J.L., Pritchard, W., Scott, L.R.: A comparison of solutions of two model equations for long waves. Wisconsin Univ-Madison Mathematics Research Center, Tech. rep (1983)

  11. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  12. Chen, J., Yan, Q.: Bright soliton solutions to a nonlocal nonlinear schrödinger equation of reverse-time type. Nonlinear Dyn. 100, 1–10 (2020)

    Article  Google Scholar 

  13. Dağ, İ., Korkmaz, A., Saka, B.: Cosine expansion-based differential quadrature algorithm for numerical solution of the RLW equation. Numer. Methods Partial Differ. Equ. Int. J. 26(3), 544–560 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Daǧ, İ.: Least-squares quadratic b-spline finite element method for the regularised long wave equation. Comput. Methods Appl. Mech. Eng. 182(1–2), 205–215 (2000)

    Article  Google Scholar 

  15. Daǧ, İ., Özer, M.N.: Approximation of the RLW equation by the least square cubic B-spline finite element method. Appl. Math. Model. 25(3), 221–231 (2001)

    Article  MATH  Google Scholar 

  16. Daǧ, İ., Saka, B., Irk, D.: Application of cubic B-splines for numerical solution of the RLW equation. Appl. Math. Comput. 159(2), 373–389 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The use of interpolating element-free Galerkin technique for solving 2d generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J. Comput. Appl. Math. 286, 211–231 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dehghan, M., Shafieeabyaneh, N.: Local radial basis function–finite-difference method to simulate some models in the nonlinear wave phenomena: regularized long-wave and extended Fisher–Kolmogorov equations. Eng. Comput. 1–21 (2019)

  19. Djidjeli, K., Price, W., Twizell, E., Cao, Q.: A linearized implicit pseudo-spectral method for some model equations: the regularized long wave equations. Commun. Numer. Methods Eng. 19(11), 847–863 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dogan, A.: Numerical solution of regularized long wave equation using Petrov-Galerkin method. Commun. Numer. Methods Eng. 17(7), 485–494 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eilbeck, J., McGuire, G.: Numerical study of the regularized long-wave equation I: numerical methods. J. Comput. Phys. 19(1), 43–57 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eilbeck, J., McGuire, G.: Numerical study of the regularized long-wave equation. II: Interaction of solitary waves. J. Comput. Phys. 23(1), 63–73 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, vol. 6. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  24. Franke, R.: A critical comparison of some methods for interpolation of scattered data. Tech. rep, Naval Postgraduate School Monterey CA (1979)

  25. Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 38(157), 181–200 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Gajek, J., Awrejcewicz, J.: Mathematical models and nonlinear dynamics of a linear electromagnetic motor. Nonlinear Dyn. 94(1), 377–396 (2018)

    Article  Google Scholar 

  27. Gardner, L., Gardner, G.: Solitary waves of the regularised long-wave equation. J. Comput. Phys. 91(2), 441–459 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gorji, M., Alipour, M.: Analytical solution of regularized long wave (RLW) equation with homotopy analysis method. J. Math. Sci. Adv. Appl. 6(1), 165–175 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Guo, B.Y., Cao, W.M.: The Fourier pseudospectral method with a restrain operator for the RLW equation. J. Comput. Phys. 74(1), 110–126 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)

    Article  Google Scholar 

  31. Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988. Comput. Math. Appl. 19(8–9), 163–208 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hassan, H.N., Saleh, H.K.: The solution of the regularized long wave equation using the Fourier leap-frog method. Zeitschrift für Naturforschung A 65(4), 268–276 (2010)

    Article  Google Scholar 

  33. He, D.: Exact solitary solution and a three-level linearly implicit conservative finite difference method for the generalized Rosenau-Kawahara-RLW equation with generalized Novikov type perturbation. Nonlinear Dyn. 85(1), 479–498 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jiwari, R., Kumar, S., Mittal, R.: Meshfree algorithms based on radial basis functions for numerical simulation and to capture shocks behavior of burgers’ type problems. Eng. Comput. (2019)

  35. Jiwari, R., Kumar, S., Mittal, R., Awrejcewicz, J.: A meshfree approach for analysis and computational modeling of non-linear schrödinger equation. Comput. Appl. Math. 39(2), 1–25 (2020)

    Article  MATH  Google Scholar 

  36. Jiwari, R., Mittal, R., Sharma, K.K.: A numerical scheme based on weighted average differential quadrature method for the numerical solution of burgers’ equation. Appl. Math. Comput. 219(12), 6680–6691 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Jiwari, R., Pandit, S., Mittal, R.: Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput. Phys. Commun. 183(3), 600–616 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kansa, E.J.: Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kansa, E.J.: Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Korkmaz, A., Dağ, I.: Numerical simulations of boundary-forced RLW equation with cubic B-spline-based differential quadrature methods. Arab. J. Sci. Eng. 38(5), 1151–1160 (2013)

    Article  MathSciNet  Google Scholar 

  41. Krysko, V., Awrejcewicz, J., Zhigalov, M., Papkova, I., Yakovleva, T., Krysko, A.: On the mathematical models of the Timoshenko-type multi-layer flexible orthotropic shells. Nonlinear Dyn. 92(4), 2093–2118 (2018)

    Article  MATH  Google Scholar 

  42. Kumar, S., Jiwari, R., Mittal, R.: Numerical simulation for computational modelling of reaction-diffusion Brusselator model arising in chemical processes. J. Math. Chem. 57(1), 149–179 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lewis, J.C., Tjon, J.: Resonant production of solitons in the RLW equation. Phys. Lett. A 73(4), 275–279 (1979)

    Article  MathSciNet  Google Scholar 

  44. Lin, J., Xie, Z., Zhou, J.: High-order compact difference scheme for the regularized long wave equation. Commun. Numer. Methods Eng. 23(2), 135–156 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Peregrine, D.H.: Calculations of the development of an undular bore. J. Fluid Mech. 25(2), 321–330 (1966)

    Article  MathSciNet  Google Scholar 

  46. Peregrine, D.H.: Long waves on a beach. J. Fluid Mech. 27(4), 815–827 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  47. Roshan, T.: A Petrov-Galerkin method for solving the generalized regularized long wave (GRLW) equation. Comput. Math. Appl. 63(5), 943–956 (2012)

  48. Saka, B., Dağ, I.: A numerical solution of the RLW equation by Galerkin method using quartic B-splines. Commun. Numer. Methods Eng. 24(11), 1339–1361 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Santarelli, A.: Numerical analysis of the regularized long-wave equation: anelastic collision of solitary waves. Il Nuovo Cimento B (1971-1996) 46(1), 179–188 (1978)

    Article  Google Scholar 

  50. Scott, A.C., Chu, F., McLaughlin, D.W.: The soliton: a new concept in applied science. Proc. IEEE 61(10), 1443–1483 (1973)

    Article  MathSciNet  Google Scholar 

  51. Shokri, A., Dehghan, M.: A meshless method using the radial basis functions for numerical solution of the regularized long wave equation. Numer. Methods Partial Differ. Equ. An Int. J. 26(4), 807–825 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Simmons, G.F.: Differential Equations with Applications and Historical Notes. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  53. Wang, B., Liang, D.: The finite difference scheme for nonlinear schrödinger equations on unbounded domain by artificial boundary conditions. Appl. Numer. Math. 128, 183–204 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wazwaz, A.M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 187(2), 1131–1142 (2007)

    MathSciNet  MATH  Google Scholar 

  55. Wazwaz, A.M.: The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations. Appl. Math. Comput. 188(2), 1467–1475 (2007)

    MathSciNet  MATH  Google Scholar 

  56. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  57. Xie, X.Y., Liu, Z.Y., Xu, D.Y.: Bright-dark soliton, breather and semirational rogue wave solutions for a coupled ab system. Nonlinear Dyn. 101(1), 633–638 (2020)

    Article  Google Scholar 

  58. Yadav, O.P., Jiwari, R.: Some soliton-type analytical solutions and numerical simulation of nonlinear Schrödinger equation. Nonlinear Dyn. 95(4), 2825–2836 (2019)

    Article  MATH  Google Scholar 

  59. Yadong, S., Pengcheng, N.: Explicit exact solutions for the RLW equation and the SRLW equation in two space dimensions. Appl. Math. 11(3), 1–5 (1998)

    MathSciNet  MATH  Google Scholar 

  60. Zhang, H.Q., Wang, Y.: Multi-dark soliton solutions for the higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 91(3), 1921–1930 (2018)

    Article  MATH  Google Scholar 

  61. Zuo, J.M.: Soliton solutions of a general Rosenau-Kawahara-RLW equation. J. Math. Res. 7(2), 24 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, with Grant No.25(0299)/19/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Jiwari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Jiwari, R., Mittal, R.C. et al. Dark and bright soliton solutions and computational modeling of nonlinear regularized long wave model. Nonlinear Dyn 104, 661–682 (2021). https://doi.org/10.1007/s11071-021-06291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06291-9

Keywords

Navigation