Skip to main content
Log in

Dromion−like structures in a cubic−quintic nonlinear Schrödinger equation using analytical methods

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the dromion-like excitations corresponding to intramolecular chain-like proteins. In the present work, the dromion-like excitations are described by using cubic-quintic nonlinear Schrödinger equation (CQNSE) governing the dynamics of proteins and we analytically analyze the velocity (v) of dromion-like structure compared with velocity (\(v_a\)) of acoustical sound waves corresponding to the longitudinal vibrations of protein molecules. Our work is motivated by the effectiveness and powerful mathematical techniques such as modified extended tanh function method and sine–cosine function method for solving CQNSE to obtain dromion-like structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Misra, A.P., Wang, Y.: Dust-acoustic solitary waves in a magnetized dusty plasma with nonthermal electrons and trapped ions. Commun. Nonlinear Sci. Numer. Simulat. 22, 1360–1369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wang, M., Tian, B., Sun, Y., Zhang, Z.: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (\(3+1\))-dimensional nonlinear wave equation for a liquid with gas bubbles. Comput. Math. Appl. 79, 576–587 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yin, H.M., Tian, B., Zhao, X.C.: Chaotic breathers and breather fission/fusion for a vector nonlinear Schrödinger equation in a birefringent optical fiber or wavelength division multiplexed system. Appl. Math. Comput. 368, 124768 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Du, X.X., Tian, B., Yuan, Y.Q., Du, Z.: Symmetry reductions, group-invariant solutions, and conservation laws of a (\(2+1\))-dimensional nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Ann. Phys. (Berlin) 531, 1900198 (2019)

    Article  Google Scholar 

  5. Hu, C.C., Tian, B., Yin, H.M., Zhang, C.R., Zhang, Z.: Dark breather waves, dark lump waves and lump wave-soliton interactions for a (\(3+1\))-dimensional generalized Kadomtsev-Petviashvili equation in a fluid. Comput. Math. Appl. 78, 166–177 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, Z., Tian, B., Chai, H.P., Zhao, X.H.: Dark-bright semi-rational solitons and breathers for a higher-order coupled nonlinear Schrödinger system in an optical fiber. Appl. Math. Lett. 102, 106110 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, X.X., Tian, B., Qu, Q.X., Yuan, Y.Q., Zhao, X.H.: Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma. Chaos Solitons Fract. 134, 109709 (2020)

    Article  MathSciNet  Google Scholar 

  8. Zhang, C.R., Tian, B., Qu, Q.X., Liu, L., Tian, H.Y.: Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber. Z. Angew. Math. Phys. 71, 18 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lou, S.Y.: Dromion-like structures in a (\(3+1\))-dimensional KdV-type equation. J. Phys. A: Math. Gen. 29, 5989–6001 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Radha, R., Lakshmanan, M.: Singularity analysis and localized coherent structures in (\(2+1\))-dimensional generalized Korteweg-de Vries equations. J. Math. Phys. 35, 4746–4756 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hietarinta, J.: One-dromion solutions for genetic classes of equations. Phys. Lett. A 149, 118–133 (1990)

    Article  Google Scholar 

  12. Boiti, M., Leon, J.J.P., Penpinelli, M., Penpinelli, F.: Scattering of localized solitons in the plane. Phys. Lett. A 132, 432–439 (1988)

    Article  MathSciNet  Google Scholar 

  13. Tajiri, M., Arai, T.: Growing-and-decaying mode solution to the Davey-Stewartson equation. Phys. Rev. E 60, 2297–305 (1999)

    Article  MathSciNet  Google Scholar 

  14. Tajiri, M., Takeuchi, K., Arai, T.: Asynchronous development of the Benjamin-Feir unstable mode: Solution of the Davey-Stewartson equation. Phys. Rev. E 64, 56622 (2001)

    Article  Google Scholar 

  15. Tajiri, M., Miura, H., Arai, T.: Resonant interaction of modulational instability with a periodic soliton in the Davey-Stewartson equation. Phys. Rev. E 66, 67601 (2002)

    Article  MathSciNet  Google Scholar 

  16. Chow, K.W., Lou, S.Y.: Propagating wave patterns and peakons of the Davey-Stewartson system. Chaos Solitons Fract. 27, 561–567 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tang, X.Y., Chow, K.W., Rogers, C.: Propagating wave patterns for the resonant Davey-Stewartson system. Chaos Solitons Fract. 42, 2707–2712 (2009)

    Article  MATH  Google Scholar 

  18. Lou, S.Y., Ruan, H.Y.: Revisitation of the localized excitations of the (\(2+1\))-dimensional KdV equation. J. Phys. A: Math. Gen. 34, 0305–4470 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gilson, C.R., MacFarlane, S.R.: Dromion solutions of noncommutative Davey-Stewartson equations. J. Phys. A: Math. Theor. 42, 235202 (2009). (20pp)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lou, S.Y.: Dromions, Dromion Lattice, Breathers and Instantons of the Davey-Stewartson Equation. Phys. Scr. 65, 7 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuanyuan, Y., Wenjun, L., Qin, Z., Anjan, B.: Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic-quintic Ginzburg-Landau equation influenced by higher-order effects and nonlinear gain. Nonlinear Dyn. 99, 1313–1319 (2020)

    Article  Google Scholar 

  22. Yang, J.W., Gao, Y.T., Feng, Y.J., Su, C.Q.: Solitons and dromion-like structures in an inhomogeneous optical fiber. Nonlinear Dyn. 87, 851–862 (2017)

    Article  Google Scholar 

  23. Wenjun, L., Yujia, Z., Zitong, L., Qin, Z., Mohammad, M., Mehmet, E., Anjan, B.: Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 96, 729–736 (2019)

    Article  MATH  Google Scholar 

  24. Fokas, A.S., Santini, P.M.: Coherent structures in multidimensions. Phys. Rev. Lett. 63, 1329–1333 (1989)

    Article  MathSciNet  Google Scholar 

  25. Aguero, M., García-Salcedo, R., Socorro, J., Villagran, E.: Soliton structures in a molecular chain model with saturation. Int. J. Theor. Phys. 48, 670–683 (2009)

    Article  MATH  Google Scholar 

  26. Kong, L.Q., Liu, J., Jin, D.Q., Ding, D.J., Dai, C.Q.: Soliton dynamics in the three-spine \(\alpha \)-helical protein with inhomogeneous effect. Nonlinear Dyn. 87, 83–92 (2017)

    Article  Google Scholar 

  27. Cai, L.Y., Wang, X., Wang, L., Li, M., Liu, Y., Shi, Y.Y.: Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Nonlinear Dyn. 90, 2221–2230 (2017)

    Article  Google Scholar 

  28. Meng, G.Q., Pan, Y.S., Xie, X.Y.: Deformed breather and rogue waves for the inhomogeneous fourth-order nonlinear Schrödinger equation in alpha-helical proteins. Nonlinear Dyn. 100, 2779–2795 (2020)

    Article  Google Scholar 

  29. Davydov, A.S., Kislukha, N.I.: Solitons in One-Dimensional Molecular Chains. Sov. Phys. JETP 44(3), 571–575 (1976)

    Google Scholar 

  30. Kavitha, L., Jayanthi, S., Muniyappan, A., Gopi, D.: Protonic transport through solitons in hydrogen-bonded systems. Phys. Scr. 84, 035803 (2011). (8pp)

    Article  MATH  Google Scholar 

  31. Wang, Y.Y., Zhang, Y.P., Dai, C.Q.: Re-study on localized structures based on variable separation solutions from the modified tanh-function method. Nonlinear Dyn. 83, 1331–1339 (2016)

    Article  MathSciNet  Google Scholar 

  32. Abdou, M.A.: New solitons and periodic wave solutions for nonlinear physical models. Nonlinear Dyn. 52, 129–136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wazwaz, A.M.: The sine-cosine and the tanh methods: Reliable tools for analytic treatment of nonlinear dispersive equations. Appl. Math. Comp. 173, 150–164 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Houria, T., Turgut, A., Mehmet, E., Abdullah, S., Mohammad, M., Abdul, Hamid K., Tugba, A.: Some new exact wave solutions and conservation laws of potential Korteweg-de Vries equation. Nonlinear Dyn. 89, 501–508 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mohammad, M., Mostafa, E., Essaid, Z., Mohammad, F.M., Anjan, B., Milivoj, B.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zeković, S., Muniyappan, A., Zdravković, S., Kavitha, L.: Employment of Jacobian elliptic functions for solving problems in nonlinear dynamics of microtubules. Chinese Phys. B 23, 020504 (2014). (1-5)

    Article  Google Scholar 

  37. Fairouz, T., Ebru, C.A., Mustafa, I.: Optical solitons in parabolic law medium: Jacobi elliptic function solution. Nonlinear Dyn. 85, 2577–2582 (2016)

    Article  MathSciNet  Google Scholar 

  38. Xue, G., Wenjun, L., Qin, Z., Anjan, B.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 98, 1491–1500 (2019)

    Article  Google Scholar 

  39. Kavitha, L., Muniyappan, A., Zdravković, S., Satarić, M.V., Marlewski, A., Dhamayanthi, S., Gopi, D.: Propagation of kink-antikink pair along microtubules as a control mechanism for polymerization and depolymerization processes. Chinese Phys. B 23, 098703 (2014). (1-15)

    Article  Google Scholar 

  40. Gao, X.Y., Guo, Y.J., Shan, W.R., Yuan, Y.Q., Zhang, C.R., Chen, S.S.: Magneto-optical/ferromagnetic-material computation: Bäcklund transformations, bilinear forms and solitons for a generalized (\(3+1\))-dimensional variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 111, 106627 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gao, X.Y., Guo, Y.J., Shan, W.R.: Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations. Appl. Math. Lett. 104, 106170 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Ablowitz- Kaup-Newell-Segur system, conservation laws and Bäcklund transformation of a variable-coefficient Korteweg-de Vries equation in plasma physics, fluid dynamics or atmospheric science. Int. J. Mod. Phys. B 34, 2050226 (2020)

    Article  MATH  Google Scholar 

  43. El-Wakil, S.A., Abdou, M.A.: New exact travelling wave solutions using modified extended tanh-function method. Chaos Solitons Fract. 31, 840–852 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. El-Wakil, S.A., Abdou, M.A.: Modified extended tanh-function method for solving nonlinear partial differential equations. Chaos Solitons Fract. 31, 1256–1264 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Soliman, A.A.: The modified extended tanh-function method for solving Burgers-type equations. Phys. A 361, 394–404 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

AM gratefully acknowledges the Theivanai Ammal College for Women (A), Villupuram, Tamilnadu, India, for providing the DST-FIST lab. The authors thank the editor of the Nonlinear Dynamics journal for providing very useful suggestions to improve our research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Muniyappan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniyappan, A., Suruthi, A., Monisha, B. et al. Dromion−like structures in a cubic−quintic nonlinear Schrödinger equation using analytical methods. Nonlinear Dyn 104, 1533–1544 (2021). https://doi.org/10.1007/s11071-021-06350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06350-1

Keywords

Navigation