Skip to main content
Log in

Analytical solutions of solitary waves and their collision stability in a pre-compressed one-dimensional granular crystal

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a pre-compressed one-dimensional granular crystal model is studied. The bright analytic single and multiple solitary wave solutions in more general forms than those obtained the KdV system in the previous studies are derived by using the homogeneous balance principle and Hirota’s bilinear method. The difference between the present solutions and those from the KdV system are investigated both analytically and numerically. By analyzing the dispersion relation and the collision process of solitary waves, we find that there are two types of double-solitary waves in the pre-compressed granular crystal model. The geometric and numerical analysis of dynamic behaviors of the solutions is presented with emphasis on the relation between the double-solitary waves and elastic collision between single-solitary waves. We find that the opposite collision between single-solitary waves may be stable and thus generate a stable double-solitary wave. It is concluded that the collision is a special stable double-solitary wave solution. We further propose a possible way to determine the stability of multiple solitary waves qualitatively. The results of this paper provide a theoretical basis for finding stable multiple solitary wave solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2004)

    MATH  Google Scholar 

  2. Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F., Peeters, M., Kerschen, G.: Nonlinear normal modes and band zones in granular chains with no pre-compression. Nonlinear Dyn. 63, 359–385 (2011)

    Article  MathSciNet  Google Scholar 

  3. Pennec, Y., Djafari-Rouhani, B., Vasseur, J.O., Khelif, A., Deymier, P.A.: Tunable filtering and demultiplexing in phononic crystals with hollow cylinders. Phys. Rev. E 69, 4 (2004)

    Article  Google Scholar 

  4. Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B., Laude, V.: Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84, 4400 (2004)

    Article  Google Scholar 

  5. Hsiao, F.-L., Khelif, A., Moubchir, H., Choujaa, A., Chen, C.-C., Laude, V.: Waveguiding inside the complete band gap of a phononic crystal slab. Phys. Rev. E 76, 056601 (2007)

    Article  Google Scholar 

  6. Wang, Y., Yousefzadeh, B., Chen, H., Nassar, H., Huang, G., Daraio, C.: Observation of nonreciprocal wave propagation in a dynamic phononic lattice. Phys. Rev. Lett. 121, 194301 (2018)

    Article  Google Scholar 

  7. Chen, Y., Wu, B., Su, Y., Chen, W.Q.: Tunable two-way unidirectional acoustic diodes: design and simulation. J. Appl. Mech. 86(3), 031010 (2019)

    Article  Google Scholar 

  8. Zhou, W.J., Li, X.P., Wang, Y.S., Chen, W.Q., Huang, G.L.: Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials. J. Sound Vib. 413, 250 (2018)

    Article  Google Scholar 

  9. Pennec, Y., Djafari-Rouhani, B., Vasseur, J.O., Khelif, A., Deymier, P.A.: Tunable filtering and demultiplexing in phononic crystals with hollow cylinders. Phys. Rev. E 69, 046608 (2004)

    Article  Google Scholar 

  10. Casadei, F., Delpero, T., Bergamini, A., Ermanni, P., Ruzzene, M.: Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials. J. Appl. Phys 112, 064902 (2012)

    Article  Google Scholar 

  11. Wang, Y.F., Wang, Y.Z., Wu, B., Chen, W.Q., Wang, Y.S.: Tunable and active phononic crystals and metamaterials. Appl. Mech. Rev 72(4), 040801 (2020)

    Article  Google Scholar 

  12. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys. Rev. E 73, 026610 (2006)

    Article  Google Scholar 

  13. Chaunsali, R., Theocharis, G.: Self-induced topological transition in phononic crystals by nonlinearity management. Phys. Rev. B 100, 014302 (2019)

    Article  Google Scholar 

  14. Daraio, C., Nesterenko, V., Herbold, E., Jin, S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E 72, 016603 (2005)

    Article  Google Scholar 

  15. Ganesh, R., Gonella, S.: From modal mixing to tunable functional switches in nonlinear phononic crystals. Phys. Rev. Lett. 114, 054302 (2015)

    Article  Google Scholar 

  16. Boechler, N., Theocharis, G., Job, S., Kevrekidis, P.G., Porter, M.A., Daraio, C.: Discrete breathers in one-dimensional diatomic granular crystals. Phys. Rev. Lett. 104, 244302 (2010)

    Article  Google Scholar 

  17. Lin, W.H., Daraio, C.: Wave propagation in one-dimensional microscopic granular chains. Phys. Rev. E 94, 052907 (2016)

    Article  Google Scholar 

  18. Chong, C., Porter, M.A., Kevrekidis, P.G., Daraio, C.: Nonlinear coherent structures in granular crystals. J. Phys. Condensed Matter 29, 413003 (2017)

    Article  Google Scholar 

  19. Molerón, M., Chong, C., Martónez, A.J., Porter, M.A., Kevrekidis, P.G., Daraio, C.: Nonlinear excitations in magnetic lattices with long-range interactions. New J. Phys. 21, 063032 (2019)

    Article  MathSciNet  Google Scholar 

  20. Singhal, T., Kim, E., Kim, T.Y., Yang, J.: Weak bond detection in composites using highly nonlinear solitary waves. Smart Mater. Struct. 26, 055011 (2017)

    Article  Google Scholar 

  21. Porter, M.A., Daraio, C., Herbold, E.B., Szelengowicz, I., Kevrekidis, P.G.: Highly nonlinear solitary waves in periodic dimer granular chains. Phys. Rev. E 77, 015601(R) (2008)

    Article  MATH  Google Scholar 

  22. Yang, J., Silvestro, C., Khatri, D., De Nardo, L., Daraio, C.: Interaction of highly nonlinear solitary waves with linear elastic media. Phys. Rev. E 83, 046606 (2011)

    Article  Google Scholar 

  23. Burgoyne, H.A., Newman, J.A., Jackson, W.C., Daraio, C.: Guided impact mitigation in 2D and 3D granular crystals. Procedia Eng. 103, 52 (2015)

    Article  Google Scholar 

  24. Ciampa, F., Mankar, A., Marini, A.: Phononic crystal waveguide transducers for nonlinear elastic wave sensing. Sci. Rep. 7, 14712 (2017)

    Article  Google Scholar 

  25. Kurosu, M., Hatanaka, D., Onomitsu, K., Yamaguchi, H.: On-chip temporal focusing of elastic waves in a phononic crystal waveguide. Nat. Commun 9, 1331 (2018)

    Article  Google Scholar 

  26. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Book  Google Scholar 

  27. Fermi, E., Pasta, J., Ulam, S.: Studies of Nonlinear Problems, pp. 977–988. University of Chicago Press, Chicago (1955)

    Book  MATH  Google Scholar 

  28. Lamb, G.L., Jr.: Elements of Soliton Theory. Wiley, New York (1980)

    MATH  Google Scholar 

  29. Li, Q., Pnevmatikos, S., Economou, E., Soukoulis, C.: Lattice-soliton scattering in nonlinear atomic chains. Phys. Rev. B 37(7), 3534 (1988)

    Article  Google Scholar 

  30. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  31. Schiesser, W.E.: Spline Collocation Methods for Partial Differential Equations with Applications in R. Wiley, USA (2017)

    Book  MATH  Google Scholar 

  32. Nesterenko, V. F.: Propagation of nonlinear compression pulses in granular media. Prikl. Mekh. Tekh. Fiz. 24, 136 (1983) [J. Appl. Mech. Phys. 24, 733 (1983)]

  33. Liu, Z.G., Wang, Y.S., Huang, G.L.: Solitary waves in a granular chain of elastic spheres: multiple solitary solutions and their stabilities. Phys. Rev. E 99, 062904 (2019)

    Article  MathSciNet  Google Scholar 

  34. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  35. Wang, M.L.: Exact solutions for a compound KdV-Burgers equation. Phys. Lett. A 213, 279 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, M.L., Zhou, Y., Li, Z.B.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67 (1996)

    Article  MATH  Google Scholar 

  37. Zhang, J.L., Liu, Z.G., Li, S.W., Wang, M.L.: Solitary waves and stable analysis for the quintic discrete nonlinear Schrödinger equation. Phys. Scripta 86, 015401 (2012)

    Article  MATH  Google Scholar 

  38. Zhang, J.L., Liu, Z.G.: Exact solutions of discrete complex cubic Ginzburg—Landau equation and their linear stability. Commun. Theor. Phys. 56, 1111 (2011)

    Article  MATH  Google Scholar 

  39. Hietarinta, J.: Exact solution of the Korteweg—de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)

    Article  Google Scholar 

  40. Wang, M, L.: Nonlinear Evolution Equations and Solitons, Lanzhou University Press, Lanzhou (1990) (in Chinese)

  41. Lautrup, B., Appali, R., Jackson, A.D., et al.: The stability of solitons in biomembranes and nerves. Eur. Phys. J. E 34, 57 (2011)

    Article  Google Scholar 

  42. Kevrekidis, P.G.: The Discrete Nonlinear Schrödinger Equation. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  43. Trill, S., Torruellas, W.: Spatial Solitons, 1st edn. Springer, Berlin (2001)

    Book  Google Scholar 

  44. Agrawal, G.P.: Nonlinear Fiber Optics. Academic, New York (1995)

    MATH  Google Scholar 

  45. Ta-Tsien, L., Yi, Z., De-Xing, K.: Global classical solutions for general quasilinear hyperbolic systems with decay initial data. Nonlin. Anal. 28, 1299 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, Q.L., Qi, G.Y.: Homoclinic bifurcations and chaotic dynamics of non-planar waves in axially moving beam subjected to thermal load. Appl. Math. Modell. 83, 674 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Seydel, R.: Practical Bifurcation and Stability Analysis. Springer, New York (2010)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This piece of work is supported by the National Natural Science Foundation of China under grant numbers 11532001 and 11991031. The third author (Y. S. Wang) is also grateful for the support of National Natural Science Foundation of China under grant number 12021002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Sheng Wang.

Ethics declarations

Conflict of interest

We would like to declare on behalf of our co-authors that the work described in this paper is original, has not been published previously, and is not considered for publication elsewhere, in whole or in part. All the authors listed have approved the submission of the manuscript. No conflict of interest exits in the submission of the manuscript.

Code availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZG., Zhang, J., Wang, YS. et al. Analytical solutions of solitary waves and their collision stability in a pre-compressed one-dimensional granular crystal. Nonlinear Dyn 104, 4293–4309 (2021). https://doi.org/10.1007/s11071-021-06534-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06534-9

Keywords

Navigation