Skip to main content
Log in

Investigation of aeroelastic instabilities for a thin panel in turbulent flow

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamic response of a thin buckled panel in a supersonic wind-tunnel experiment is investigated. Measured time histories of the panel displacement and velocity show co-existing, nonlinear responses with features of periodic and chaotic oscillations. Fully coupled computational analyses are conducted in order to study and interpret the aeroelastic phenomena observed during the experiments. A computationally efficient modeling framework is formulated with a nonlinear structural reduced-order model and enriched piston theory aerodynamics for the mean flow. The simulations predict the onset of the chaotic motions observed in the experiments, albeit with an approximately 21% increase in the oscillation amplitude. A linearized equation governing the distance between neighboring solutions is derived and used to compute the largest Lyapunov exponent in order to prove the existence of chaos. A modified Riks analysis highlights the co-existence of multiple equilibrium positions which predisposes the nonlinear system to chaos. The system’s sensitivity to cavity pressure, temperature differential, and initial conditions is also investigated. Variation of the cavity pressure and temperature differential yields additional regions of dynamic activity that were not explored during the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Anderson, J.D., Jr.: Fundamentals of Aerodynamics, 4th edn, pp. 715–717. McGraw-Hill, New York (2007)

  2. Bartels, R.E., Rumsey, C.L., Biedron, R.T.: CFL3D User’s manual-general usage and aeroelastic analysis (Version 6.4). NASA TM 2006-214301 (2006)

  3. Bertin, J.J., Cummings, R.M.: Fifty years of hypersonics: where we’ve been and where we’re going. Prog. Aerosp. Sci 39, 511–536 (2003). https://doi.org/10.1016/S0376-0421(03)00079-4

    Article  Google Scholar 

  4. Brouwer, K.R., McNamara, J.J.: Enriched Piston theory for expedient aeroelastic loads prediction in the presence of shock impingements. AIAA J. 57(3), 1288–1302 (2019). https://doi.org/10.2514/1.J057595

    Article  Google Scholar 

  5. Brouwer, K.R., Perez, R.A., Beberniss, T.J., Spottswood, S.M., Ehrhardt, D.A.: Experiments on a thin panel excited by turbulent flow and shock/boundary-layer interactions. AIAA J. Artic. Adv. (2021). https://doi.org/10.2514/1.J060114

    Article  Google Scholar 

  6. Budiansky, B., Sanders, J.L.: On the Best First-Order Linear Shell Theory. Harvard University, Division of Engineering and Applied Physics, Cambridge (1962)

    Google Scholar 

  7. Casper, K.M., Beresh, S.J., Henfling, J.F., Spillers, R.W., Hunter, P., Spitzer, S.: Hypersonic fluid-structure interactions due to intermittent turbulent spots on a slender cone. AIAA J. 57(2), 749–759 (2019). https://doi.org/10.2514/1.J057374

    Article  Google Scholar 

  8. Cheng, G., Mei, C.: Finite element modal formulation for hypersonic panel flutter analysis with thermal effects. AIAA J. 42(4), 687–695 (2004). https://doi.org/10.2514/1.9553

    Article  Google Scholar 

  9. Crowell, A.R., McNamara, J.J., Miller, B.A.: Hypersonic aerothermoelastic response prediction of skin panels using computational fluid dynamic surrogates. J. Aeroelast. Struct. Dyn. 2(2), 3–30 (2011)

    Google Scholar 

  10. Culler, A.J., McNamara, J.J.: Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow. AIAA J. 48(8), 1721–1738 (2010). https://doi.org/10.2514/1.J050193

    Article  Google Scholar 

  11. Currao, G.M.D., Neely, A.J., Kennel, C.M., Gai, S.L., Buttsworth, D.R.: Hypersonic fluid-structure interaction on a cantilevered plate with shock impingement. AIAA J. 57(11), 4819–4834 (2019). https://doi.org/10.2514/1.J058375

    Article  Google Scholar 

  12. Daub, D., Willems, S., Esser, B., Gülhan, A.: Experiments on aerothermal supersonic fluid structure interaction. In: Adams, N.A. et al. (eds.) Future Space-Transport-System Components under High Thermal and Mechanical Loads. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 146. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-53847-7_21

  13. Deshmukh, R., Culler, A.J., Miller, B.A., McNamara, J.J.: Response of skin panels to combined self- and boundary layer-induced fluctuating pressure. J. Fluids Struct. 58, 216–235 (2015). https://doi.org/10.1016/j.jfluidstructs.2015.08.008

    Article  Google Scholar 

  14. Dixon, S.C.: Experimental investigation at Mach number 3.0 of effects of thermal stress and buckling on flutter characteristics of flat single-bay panels of length-width ratio 0.96. NASA TN D-1485 (1962)

  15. Dixon, S.C., Shore, C.P.: Effects of differential pressure, thermal stress and buckling on flutter of flat panels with length-width ratio of 2. NASA TN D-2047 (1963)

  16. Dixon, S.C., Griffith, G.E., Bohon, H.L.: Experimental investigation at Mach number 3.0 of the effects of thermal stress and buckling on the flutter of four-bay aluminum alloy panels with length-width ratios of 10. NASA TN D-921 (1961)

  17. Dowell, E.H.: Nonlinear oscillations of a fluttering plate. AIAA J. 4(7), 1267–1275 (1966). https://doi.org/10.2514/3.3658

    Article  Google Scholar 

  18. Dowell, E.H.: Nonlinear oscillations of a fluttering plate II. AIAA J. 5(10), 1856–1862 (1967). https://doi.org/10.2514/3.4316

    Article  Google Scholar 

  19. Dowell, E.H.: Panel flutter: a review of the aeroelastic stability of plates and shells. AIAA J. 8(3), 385–399 (1970). https://doi.org/10.2514/3.5680

    Article  Google Scholar 

  20. Dowell, E.H.: Flutter of a buckled plate as an example of chaotic motion of a deterministic autonomous system. J. Sound Vib. 85(3), 333–344 (1982). https://doi.org/10.1016/0022-460X(82)90259-0

    Article  MathSciNet  Google Scholar 

  21. Dowell, E.H., Voss, H.M.: Theoretical and experimental panel flutter studies in the Mach number range 1.0–5.0. AIAA J. 3(12), 2292–2304 (1965). https://doi.org/10.2514/3.3359

    Article  Google Scholar 

  22. Dugundji, J.: Theoretical considerations of panel flutter at high supersonic Mach numbers. AIAA J. 4(7), 1257–1266 (1966). https://doi.org/10.2514/3.3657

    Article  MATH  Google Scholar 

  23. Dugundji, J., Calligeros, J.M.: Similarity laws for aerothermoelastic testing. J. Aerosp. Sci. 29(8), 935–950 (1962). https://doi.org/10.2514/8.9663

    Article  Google Scholar 

  24. Freydin, M., Dowell, E.H., Spottswood, S.M., Perez, R.A.: Nonlinear dynamics and flutter of plate and cavity in response to supersonic wind tunnel start. Nonlinear Dyn. 103, 3019–3036 (2021). https://doi.org/10.1007/s11071-020-05817-x

    Article  Google Scholar 

  25. Fung, Y.C., Tong, P.: Classical and Computational Solid Mechanics, pp. 407–425. World Scientific, New Jersey (2001)

    Book  Google Scholar 

  26. Gruber, M., Nejad, A.: Development of a large-scale supersonic combustion research facility. AIAA Pap. (1994). https://doi.org/10.2514/6.1994-544

    Article  Google Scholar 

  27. Hopkins, M.A., Dowell, E.H.: Limited amplitude flutter with a temperature differential. AIAA Pap. (1994). https://doi.org/10.2514/6.1994-1486

    Article  Google Scholar 

  28. Krist, S.L., Biedron, R.T., Rumsey, C.L.: CFL3D User’s manual (Version 5.0). NASA TM 1998-208444 (1997)

  29. Lighthill, M.: Oscillating airfoils at high Mach numbers. J. Aeronaut. Sci. 20(6), 402–406 (1953). https://doi.org/10.2514/8.2657

    Article  MathSciNet  MATH  Google Scholar 

  30. McNamara, J.J., Friedmann, P.P.: Aeroelastic and aerothermoelastic analysis in hypersonic flow: past, present, and future. AIAA J. 49(6), 1089–1122 (2011). https://doi.org/10.2514/1.J050882

    Article  Google Scholar 

  31. McNamara, J.J., Crowell, A.R., Friedmann, P.P., Glaz, B., Gogulapti, A.: Approximate modeling of unsteady aerodynamics for hypersonic aeroelasticity. J. Aircr. 47(6), 1932–1945 (2010). https://doi.org/10.2514/1.C000190

    Article  Google Scholar 

  32. Mei, C., Abdel-Motagaly, K., Chen, R.: Review of nonlinear panel flutter at supersonic and hypersonic speeds. Appl. Mech. Rev. 52(10), 321–332 (1999). https://doi.org/10.1115/1.3098919

    Article  Google Scholar 

  33. Meijer, M.C., Dala, L.: Generalized formulation and review of piston theory for airfoils. AIAA J. 54(1), 17–27 (2016). https://doi.org/10.2514/1.J054090

    Article  Google Scholar 

  34. Menter, F.R.: Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994). https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  35. Mignolet, M.P., Przekop, A., Rizzi, S., Spottswood, S.: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. J. Sound Vib. 332(10), 2437–2460 (2013). https://doi.org/10.1016/j.jsv.2012.10.017

    Article  Google Scholar 

  36. Miller, B.A., McNamara, J.J.: Efficient fluid-thermal-structural time marching with computational fluid dynamics. AIAA J. 56(9), 3610–3621 (2018). https://doi.org/10.2514/1.J056572

    Article  Google Scholar 

  37. Miller, B.A., McNamara, J.J., Spottswood, S.M., Culler, A.J.: The impact of flow induced loads on snap-through behavior of acoustically excited, thermally buckled panels. J. Sound Vib. 330(23), 5736–5752 (2011). https://doi.org/10.1016/j.jsv.2011.06.028

    Article  Google Scholar 

  38. Nydick, I., Friedmann, P.P., Zhong, X.: Hypersonic panel flutter studies on curved panels. AIAA Pap. (1995). https://doi.org/10.2514/6.1995-1485

    Article  Google Scholar 

  39. Peltier, S.J., Rice, B.E., Szmodis, J.M., Ogg, D.R., Hofferth, J.W., Sellers, M.E., Harris, A.: Aerodynamic response to a compliant panel in Mach 4 flow. AIAA Pap. (2019). https://doi.org/10.2514/6.2019-3541

    Article  Google Scholar 

  40. Pham, H.T., Gianikos, Z.N., Narayanaswamy, V.: Compression ramp induced shock-wave/turbulent boundary-layer interactions on a compliant material. AIAA J. 56(7), 2925–2929 (2018). https://doi.org/10.2514/1.J056652

    Article  Google Scholar 

  41. Pourtakdoust, S.H., Fazelzadeh, S.A.: Chaotic analysis of nonlinear viscoelastic panel flutter in supersonic flow. Nonlinear Dyn. 32, 387–404 (2003). https://doi.org/10.1023/A:1025616916033

    Article  MATH  Google Scholar 

  42. Riks, E.: Some computational aspects of the stability analysis of nonlinear structures. Comput. Methods Appl. Mech. Eng. 47(3), 219–259 (1984). https://doi.org/10.1016/0045-7825(84)90078-1

    Article  MATH  Google Scholar 

  43. Shideler, J.L., Dixon, S.C., Shore, C.P.: Flutter at Mach 3 of thermally stressed panels and comparison with theory for panels with edge rotational restraint. NASA TN D-3498 (1966)

  44. Spottswood, S.M., Beberniss, T., Eason, T.G., Perez, R.A., Donbar, J.M., Ehrhardt, D.A., Riley, Z.B.: Exploring the response of a thin, flexible panel to shock-turbulent boundary-layer interactions. J. Sound Vib. 443, 74–89 (2019). https://doi.org/10.1016/j.jsv.2018.11.035

    Article  Google Scholar 

  45. Van Dyke, M.: A study of second-order supersonic-flow theory. NACA TN 2200 (1951)

  46. Whalen, T.J., Schöneich, A.G., Laurence, S.J., Sullivan, B.T., Bodony, D.J., Freydin, M., Dowell, E.H., Buck, G.: Hypersonic fluid-structure interactions in compression corner shock-wave/boundary-layer interaction. AIAA J. 58(9), 4090–4105 (2020). https://doi.org/10.2514/1.J059152

    Article  Google Scholar 

Download references

Funding

This research was sponsored by the Air Force Office of Scientific Research (AFOSR) Multi-scale Structural Mechanics and Prognosis and High-Speed Aerodynamics Programs via research grant number 18RQCOR099. The authors gratefully acknowledge the support of AFOSR program managers, Drs. Jaimie Tiley and Ivett Leyva. The authors would also like to thank Innovative Scientific Solutions Inc. (Dr. Jim Crafton, Dr. Brad Ochs, Paul Gross, and Justin Hardman) for their wind-tunnel and full-field measurement support as well as Dr. Steve Hammack (AFRL/RQHF). This work was supported in part by high-performance computer time and resources from the DoD High Performance Computing Modernization Program.

Author information

Authors and Affiliations

Authors

Contributions

KRB contributed to the writing of original draft, formal analysis, software, and visualization. SMS and RAP contributed to the formal analysis and conceptualization. TJB and DAE performed experimental investigation and data curation. RW contributed to the formal analysis. All authors contributed to the writing, review, and editing.

Corresponding author

Correspondence to Kirk R. Brouwer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brouwer, K.R., Perez, R.A., Beberniss, T.J. et al. Investigation of aeroelastic instabilities for a thin panel in turbulent flow. Nonlinear Dyn 104, 3323–3346 (2021). https://doi.org/10.1007/s11071-021-06571-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06571-4

Keywords

Navigation