Skip to main content
Log in

Identification of time-varying nonlinear structural physical parameters by integrated WMA and UKF/UKF-UI

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The identification of time-varying physical parameters of nonlinear systems is still a challenging task. Limited studies based on the wavelet multiresolution analysis (WMA) have been attempted, which requires full measurements of structural displacement, velocity and acceleration responses of all degrees of freedom and exact information of external excitations. This limits the engineering application of these methods. This paper proposes approaches to identify the time-varying physical parameters of nonlinear structures in three cases using only partially measured structural responses. Firstly, the identification of time-varying nonlinear structures with a small number of elements under known excitations is discussed. The fading-factor unscented Kalman filter (FUKF) method is applied to locate the time-varying parameters, and the WMA integrated with UKF method is employed using partially measured acceleration responses. Secondly, it is further extended to the identification of time-varying nonlinear structures with a small number of elements but under unknown excitations. An improved fading-factor unscented Kalman filter under unknown input (FUKF-UI) method is proposed to locate the time-varying parameters, and WMA integrated with UKF-UI method is utilized with partially observed acceleration and displacement responses. Thirdly, for practical engineering applications, the identification of time-varying nonlinear structure with more elements under unknown excitations is conducted. The proposed FUKF-UI method is employed to locate the time-varying parameters of the whole structure. Then, the whole structure is divided into several substructures and the unknown interaction forces are regarded as the fictitious unknown inputs to the substructure. Thus, physical parameters of each substructure can be identified in parallel by the combination of WMA and UKF-UI. Three numerical studies corresponding to these three cases are conducted, respectively, to demonstrate the effectiveness and accuracy of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Xin, Y., Hao, H., Li, J.: Time-varying system identification by enhanced empirical wavelet transform based on synchroextracting transform. Eng. Struct. 196, 109313 (2019)

    Article  Google Scholar 

  2. Li, J.T., Zhu, X.Q., Law, S.S., Samali, B.: Time-varying characteristics of bridges under the passage of vehicles using synchroextracting transform. Mech. Syst. Signal Process. 140, 106727.1–106727.19 (2020)

    Article  Google Scholar 

  3. Bao, Y.Q., Chen, Z.C., Wei, S.Y., Xu, Y., Tang, Z.Y., Li, H.: The state of the art of data science and engineering in structural health monitoring. Engineering 5(2), 234–242 (2019)

    Article  Google Scholar 

  4. Bao, Y.Q.,Li, H.: Machine learning paradigm for structural health monitoring. Struct. Health Monitor. 20(4), 1353–1372 (2020)

    Article  Google Scholar 

  5. Huang, Q., Xu, Y.L., Liu, H.J.: An efficient algorithm for simultaneous identification of time-varying structural parameters and unknown excitations of a building structure. Eng. Struct. 98, 29–37 (2015)

    Article  Google Scholar 

  6. Yang, J.N., Lin, S.L.: On-line identification of non-linear hysteretic structures using an adaptive tracking technique. Int. J. Non Linear Mech. 39(9), 1481–1491 (2004)

    Article  MATH  Google Scholar 

  7. Mu, H.Q., Kuok, S.C., Yuen, K.V.: Stable robust extended Kalman filter. J. Aerosp. Eng. B 30, 4016010 (2016)

    Article  Google Scholar 

  8. Wang, C., Ren, W.X., Wang, Z.C., Zhu, H.P.: Time-varying physical parameter identification of shear type structures based on discrete wavelet transform. Smart Struct. Syst. 14(5), 831–845 (2014)

    Article  Google Scholar 

  9. Xiang, M., Xiong, F., Shi, Y.F., Dai, K.S., Ding, Z.B.: Wavelet multi-resolution approximation of time-varying frame structure. Adv. Mech. Eng. 10(8), 1–19 (2018)

    Article  Google Scholar 

  10. Wang, C., Ai, D.M., Ren, W.X.: A wavelet transform and substructure algorithm for tracking the abrupt stiffness degradation of shear structure. Adv. Struct. Eng. 22(5), 1136–1148 (2019)

    Article  Google Scholar 

  11. Chen, S.Y., Lu, J.B., Lei, Y.: Identification of time-varying systems with partial acceleration measurements by synthesis of wavelet decomposition and Kalman filter. Adv. Mech. Eng. 12(6), 168781402093046 (2020)

    Article  Google Scholar 

  12. Lei, Y., Yang, N.: Simultaneous identification of structural time-varying physical parameters and unknown excitations using partial measurements. Eng. Struct. 214, 110672 (2020)

    Article  Google Scholar 

  13. Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn. 99, 1709–1761 (2020)

    Article  MATH  Google Scholar 

  14. Xu, Y., Wei, S.Y., Bao, Y.Q., Li, H.: Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network. Struct. Control Health Monit. 26(3), e2313 (2019)

    Article  Google Scholar 

  15. Xu, B., He, J., Dyke, S.J.: Model-free nonlinear restoring force identification for SMA dampers with double Chebyshev polynomials: approach and validation. Nonlinear Dyn. 82(3), 1–16 (2015)

    Article  Google Scholar 

  16. Wei, S., Peng, Z.K., Dong, X.J., Zhang, W.M.: A nonlinear subspace-prediction error method for identification of nonlinear vibrating structures. Nonlinear Dyn. 91, 1605–1617 (2018)

    Article  MATH  Google Scholar 

  17. He, J., Xu, B., Masri, S.F.: Restoring force and dynamic loadings identification for a nonlinear chain-like structure with partially unknown excitations. Nonlinear Dyn. 69(1–2), 231–245 (2012)

    Article  Google Scholar 

  18. Lei, Y., Luo, S.J., He, M.Y.: Identification of model-free structural nonlinear restoring forces using partial measurements of structural responses. Adv. Struct. Eng. 20(1), 69–80 (2016)

    Article  Google Scholar 

  19. Xu, B., Li, J., Dyke, S.J., Deng, B.C., He, J.: Nonparametric identification for hysteretic behavior modelled with a power series polynomial using EKF-WGI approach under limited acceleration and unknown mass. Int. J. Non-linear Mech. 103324 (2019)

  20. Cheng, C.M., Peng, Z.K., Zhang, W.M., Meng, G.: Volterra-series-based nonlinear system modeling and its engineering applications: a state-of-the-art review. Mech. Syst. Signal Process. 87, 340–364 (2017)

    Article  Google Scholar 

  21. Wang, Z.C., Ren, W.X., Chen, G.D.: Time-frequency analysis and applications in time-varying/nonlinear structural systems: a state-of-the-art review. Adv. Struct. Eng. 21, 1562–1584 (2018)

    Article  Google Scholar 

  22. Qu, H.Y., Li, T.T., Chen, G.D.: Multiple analytical mode decompositions for nonlinear system identification from forced vibration. Eng. Struct. 173, 979–986 (2018)

    Article  Google Scholar 

  23. Li, H., Mao, C.X., Ou, J.P.: Identification of hysteretic dynamic systems by using hybrid extended Kalman filter and wavelet multiresolution analysis with limited observation. J. Eng. Mech. 139(5), 547–558 (2013)

    Google Scholar 

  24. Ghanem, R., Romeo, F.: A wavelet-based approach for model and parameter identification of non-linear systems. Int. J. Non-Linear Mech. 36(5), 835–859 (2001)

    Article  MATH  Google Scholar 

  25. Kougioumtzoglou, I.A., Spanos, P.D.: An identification approach for linear and nonlinear time-variant structural systems via harmonic wavelets. Mech. Syst. Signal Process. 37(1–2), 338–352 (2013)

    Article  Google Scholar 

  26. Yang, Y., Peng, Z.K., Dong, X.J., Zhang, W.M., Meng, G.: Nonlinear time-varying vibration system identification using parametric time–frequency transform with spline kernel. Nonlinear Dyn. 85(3), 1679–1694 (2016)

    Article  MathSciNet  Google Scholar 

  27. Chang, C.C., Shi, Y.F.: Identification of time-varying hysteretic structures using wavelet multiresolution analysis. Int. J. Non-Linear Mech. 45(1), 21–34 (2010)

    Article  MathSciNet  Google Scholar 

  28. Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: A new approach for filtering nonlinear systems. Proc. Am. Control Conf. 3, 1628–1632 (1995)

    Google Scholar 

  29. Astroza, R., Alessandri, A., Conte, J.P.: Finite element model updating accounting for modeling uncertainty. Mech. Syst. Signal Process. 115(15), 782–800 (2019)

    Article  Google Scholar 

  30. Lei, Y., Xia, D.D., Erazo, K., Nagarajaiah, S.: A novel unscented Kalman filter for recursive state-input-system identification of nonlinear systems. Mech. Syst. Signal Process. 127(15), 120–135 (2019)

    Article  Google Scholar 

  31. Jwo, D.J., Yang, C.F., Chuang, C.H., Lee, T.Y.: Performance enhancement for ultra-tight GPS/INS integration using a fuzzy adaptive strong tracking unscented Kalman filter. Nonlinear Dyn. 73(1–2), 377–395 (2013)

    Article  MathSciNet  Google Scholar 

  32. Hu, G.G., Wang, W., Zhong, Y.M., Gao, B.B., Gu, C.F.: A new direct filtering approach to INS/GNSS integration. Aerosp. Sci. Technol. 77, 755–764 (2018)

    Article  Google Scholar 

  33. Bisht, S.S., Singh, M.P.: An adaptive unscented Kalman filter for tracking sudden stiffness changes. Mech. Syst. Signal Process. 49(1–2), 181–195 (2014)

    Article  Google Scholar 

  34. Wang, N., Li, L., Wang, Q.: Adaptive UKF-based parameter estimation for Bouc–Wen model of magnetorheological elastomer materials. J. Aerosp. Eng. 32(1), 04018130 (2019)

    Article  Google Scholar 

  35. Gaviria, C.A., Montejo, L.A.: Monitoring physical and dynamic properties of reinforced concrete structures during seismic excitations. Constr. Build. Mater. 196, 43–53 (2019)

    Article  Google Scholar 

  36. Koh, C.G., See, L.M., Balendra, T.: Estimation of structural parameters in time domain: a substructure approach. Earthq. Eng. Struct. Dynam. 20(8), 787–801 (1991)

    Article  Google Scholar 

  37. Weng, S., Zhu, H.P., Xia, Y., Gao, F.: Substructuring method in structural health monitoring. Struct. Health Monit. Meas. Methods Pract. Appl. (2017)

  38. Yuen, K.V., Huang, K.: Real-time substructural identification by boundary force modeling. Struct. Control Health Monit. 25(5), e2151.1-e2151.18 (2018)

    Article  Google Scholar 

  39. Li, J., Hao, H.: Substructure damage identification based on wavelet-domain response reconstruction. Struct. Health Monit. 13(4), 389–405 (2014)

    Article  Google Scholar 

  40. Liu, K., Law, S.S., Zhu, X.Q.: Substructural condition assessment based on force identification and interface force sensitivity. Int. J. Struct. Stab. Dyn. 15(2), 1450046 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ni, P.H., Xia, Y., Li, J., Hao, H.: Improved decentralized structural identification with output only measurements. Measurement 122, 597–610 (2018)

    Article  Google Scholar 

  42. Su, T.L., Tang, Z.Y., Peng, L.Y., Bai, Y.T., Kong, J.L.: Model updating for real time dynamic substructures based on UKF algorithm. Earthq. Eng. Eng. Vib. 19(2), 413–421 (2020)

    Article  Google Scholar 

  43. Kumar, R.K., Shankar, K.: Parametric identification of structures with nonlinearities using global and substructure approaches in the time domain. Adv. Struct. Eng. 12(2), 195–210 (2009)

    Article  Google Scholar 

  44. Tao, D.W., Zhang, D.Y., Li, H.: Structural seismic damage detection using fractal dimension of time-frequency feature. Key Eng. Mater. 558, 554–560 (2013)

    Article  Google Scholar 

  45. Lei, Y., He, M.Y., Liu, C., Lin, S.Z.: Identification of tall shear buildings under unknown seismic excitation with limited output measurements. Adv. Struct. Eng. 16(11), 1839–1850 (2013)

    Article  Google Scholar 

  46. Shi, Y.F., Chang, C.C.: Substructural time-varying parameter identification using wavelet multiresolution approximation. J. Eng. Mech. 138(1), 50–59 (2012)

    MathSciNet  Google Scholar 

  47. Shi, Y.F., Chang, C.C.: Wavelet-based identification of time-varying shear-beam buildings using incomplete and noisy measurement data. Nonlinear Eng. 2, 29–37 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China through the key project No. 51838006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Li, J., Lei, Y. et al. Identification of time-varying nonlinear structural physical parameters by integrated WMA and UKF/UKF-UI. Nonlinear Dyn 106, 681–706 (2021). https://doi.org/10.1007/s11071-021-06682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06682-y

Keywords

Navigation