Skip to main content
Log in

Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper aims at reviewing nonlinear methods for model order reduction in structures with geometric nonlinearity, with a special emphasis on the techniques based on invariant manifold theory. Nonlinear methods differ from linear-based techniques by their use of a nonlinear mapping instead of adding new vectors to enlarge the projection basis. Invariant manifolds have been first introduced in vibration theory within the context of nonlinear normal modes and have been initially computed from the modal basis, using either a graph representation or a normal form approach to compute mappings and reduced dynamics. These developments are first recalled following a historical perspective, where the main applications were first oriented toward structural models that can be expressed thanks to partial differential equations. They are then replaced in the more general context of the parametrisation of invariant manifold that allows unifying the approaches. Then, the specific case of structures discretised with the finite element method is addressed. Implicit condensation, giving rise to a projection onto a stress manifold, and modal derivatives, used in the framework of the quadratic manifold, are first reviewed. Finally, recent developments allowing direct computation of reduced-order models relying on invariant manifolds theory are detailed. Applicative examples are shown and the extension of the methods to deal with further complications are reviewed. Finally, open problems and future directions are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reprinted from [105]

Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Notes

  1. In fact, the parametrisation of the rotations in geometrically exact models can take several forms (full rotation matrix, quaternions, Lie groups...[39, 66]), mainly to avoid singularities in the case of very large rotations (of several turns). The minimal sine/cosine parametrisation discussed here allows the description of the planar motion of a beam, but not a full 3D motion. It is shown here only to formally understand the nature of the nonlinear couplings.

  2. For any tensor field \({\mathbf {A}}\), the i-th Cartesian component of its divergence is \(\sum _j \partial A_{ij}/\partial y_j\) where \(y_i\) is the i-th component of the position vector; for any vector field \({\mathbf {v}}\), the (ij) Cartesian component of its tensor gradient is \(\partial v_i/\partial y_j\).

  3. The term “tensor” used here simply refers to a multidimensional array of dimension larger than two, and not to a multilinear map, as used in mechanical models of stress and strain for instance.

  4. In Eq. (13), some coefficients can be grouped together since being related to the same monomial: \(g_{ij}^px_ix_j+g_{ji}^px_jx_i=\hat{g_{ij}^p}x_ix_j\) with \({\hat{g}}_{ij}^p=g_{ij}^p+g_{ji}^p\), \(j>i\), one of the upper triangular coefficient, see “Appendix A”.

  5. One can note that the terminology DNF for direct normal form has been introduced before in [55], but with a different purpose as the one used here. In [55], “direct” is used to specify that the normal form is computed from the second-order oscillator equations, without using first-order, state-space formulation.

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Allen, M.S., Rixen, D., van der Seijs, M., Tiso, P., Abrahamsson, T., Mayes, R.L.: Substructuring in Engineering Dynamics. Emerging Numerical and Experimental Techniques. Series CISM International Centre for Mechanical Sciences. Springer, Berlin (2020)

    Book  Google Scholar 

  3. Amabili, M.: Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections. J. Sound Vib. 291(3–5), 539–565 (2006)

    Article  Google Scholar 

  4. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  5. Amabili, M.: Nonlinear damping in large-amplitude vibrations: modelling and experiments. Nonlinear Dyn. 93, 5–18 (2018)

    Article  Google Scholar 

  6. Amabili, M.: Nonlinear damping in nonlinear vibrations of rectangular plates: derivation from viscoelasticity and experimental validation. J. Mech. Phys. Solids 118, 275–292 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amabili, M., Sarkar, A., Païdoussis, M.P.: Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method. J. Fluids Struct. 18(2), 227–250 (2003)

    Article  Google Scholar 

  8. Amabili, M., Touzé, C.: Reduced-order models for non-linear vibrations of fluid-filled circular cylindrical shells: comparison of POD and asymptotic non-linear normal modes methods. J. Fluids Struct. 23(6), 885–903 (2007)

    Article  Google Scholar 

  9. Apiwattanalunggarn, P., Shaw, S., Pierre, C., Jiang, D.: Finite element based nonlinear modal reduction of a rotating beam with large-amplitude motion. J. Vib. Control 9(3–4), 235–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arafat, H.N., Nayfeh, A.H.: Non-linear responses of suspended cables to primary resonance excitation. J. Sound Vib. 266, 325–354 (2003)

    Article  Google Scholar 

  11. Audoly, B., Pomeau, Y.: Elasticity and Geometry. From Hair Curls to the Nonlinear Response of Shells. Oxford university Press, Oxford (2010)

    MATH  Google Scholar 

  12. Balakrishna, A., Webster, J.T.: Large deflections of a structurally damped panel in a subsonic flow. Nonlinear Dyn. 103, 3165–3186 (2021)

    Article  Google Scholar 

  13. Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Boston (2006)

    MATH  Google Scholar 

  14. Bazant, Z., Cedolin, L.: Stability of Structures, 3rd edn. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  15. Berkooz, G., Holmes, P., Lumley, J.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  16. Bilbao, S., Thomas, O., Touzé, C., Ducceschi, M.: Conservative numerical methods for the full von Kàrmàn plate equations. Numer. Methods Partial Differ. Equ. 31(6), 1948–1970 (2015)

    Article  MATH  Google Scholar 

  17. Blanc, F., Touzé, C., Mercier, J.F., Ege, K., Bonnet Ben-Dhia, A.S.: On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems. Mech. Syst. Signal Process. 36(2), 520–539 (2013)

    Article  Google Scholar 

  18. Boudaoud, A., Cadot, O., Odille, B., Touzé, C.: Observation of wave turbulence in vibrating plates. Phys. Rev. Lett. 100, 234504 (2008)

    Article  Google Scholar 

  19. Breunung, T., Haller, G.: Explicit backbone curves from spectral submanifolds of forced-damped nonlinear mechanical systems. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2213), 20180083 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Brogliato, B.: Nonsmooth Mechanics. Springer, London (1999)

    Book  MATH  Google Scholar 

  21. Burby, J., Klotz, T.: Slow manifold reduction for plasma science. Commun. Nonlinear Sci. Numer. Simul. 89, 105289 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2), 283–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. II. Regularity with respect to parameters. Indiana Univ. Math. J. 52(2), 329–360 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ. Equ. 218(2), 444–515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cadot, O., Ducceschi, M., Humbert, T., Miquel, B., Mordant, N., Josserand, C., Touzé, C.: Wave turbulence in vibrating plates. In: Skiadas, C. (ed.) Handbook of Applications of Chaos Theory. Chapman and Hall/CRC, Boca Raton (2016)

    Google Scholar 

  26. Camier, C., Touzé, C., Thomas, O.: Non-linear vibrations of imperfect free-edge circular plates and shells. Eur. J. Mech. A Solids 28, 500–515 (2009)

    Article  MATH  Google Scholar 

  27. Carini, M., Auteri, F., Giannetti, F.: Centre manifold reduction of bifurcating flows. J. Fluid Mech. 767, 109–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Carr, J.: Applications of Centre Manifold Theory. Springer, New York (1981)

    Book  MATH  Google Scholar 

  29. Carr, J., Muncaster, R.G.: The application of centre manifolds to amplitude expansions. II. Infinite dimensional problems. J. Differ. Equ. 50(2), 280–288 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chaigne, A., Touzé, C., Thomas, O.: Nonlinear vibrations and chaos in gongs and cymbals. Acoust. Sci. Technol. Acoust. Soc. Jpn. 26(5), 403–409 (2005)

    Article  Google Scholar 

  31. Chen, S.L., Shaw, S.W.: Normal modes for piecewise linear vibratory systems. Nonlinear Dyn. 10, 135–164 (1996)

    Article  MathSciNet  Google Scholar 

  32. Chinesta, F., Ladeveze, P., Cueto, E.: A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng. 18(4), 395 (2011)

    Article  Google Scholar 

  33. Chueshov, I., Lasiecka, I.: Inertial manifolds for von Kàrmàn plate equations. Appl. Math. Optim. 46, 179–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chueshov, I., Lasiecka, I.: Global attractors for von Kàrmàn evolutions with a nonlinear boundary dissipation. J. Differ. Equ. 198(1), 196–231 (2004)

    Article  MATH  Google Scholar 

  35. Chueshov, I., Lasiecka, I.: Attractors and long time behavior of von Kàrmàn thermoelastic plates. Appl. Math. Optim. 58, 195–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cirillo, G., Mauroy, A., Renson, L., Kerschen, G., Sepulchre, R.: A spectral characterization of nonlinear normal modes. J. Sound Vib. 377, 284–301 (2016)

    Article  Google Scholar 

  37. Colin, M., Thomas, O., Grondel, S., Cattan, E.: Very large amplitude vibrations of flexible structures: experimental identification and validation of a quadratic drag damping model. J. Fluids Struct. 97, 103056 (2020)

    Article  Google Scholar 

  38. Corradi, G., Sinou, J.J., Besset, S.: Performances of the double modal synthesis for the prediction of the transient self-sustained vibration and squeal noise. Appl. Acoust. 175, 107807 (2021)

    Article  Google Scholar 

  39. Cottanceau, E., Thomas, O., Véron, P., Alochet, M., Deligny, R.: A finite element/quaternion/asymptotic numerical method for the 3D simulation of flexible cables. Finite Elem. Anal. Des. 139, 14–34 (2017)

    Article  MathSciNet  Google Scholar 

  40. Coullet, P.H., Spiegel, E.A.: Amplitude equations for systems with competing instabilities. SIAM J. Appl. Math. 43(4), 776–821 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. Crespo da Silva, M.R.M., Glynn, C.C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams. Part 1: equations of motion. J. Struct. Mech. 6(4), 437–448 (1978)

    Article  Google Scholar 

  42. Czaplewski, D.A., Strachan, S., Shoshani, O., Shaw, S.W., López, D.: Bifurcation diagram and dynamic response of a mems resonator with a 1:3 internal resonance. Appl. Phys. Lett. 114(25), 251404 (2019)

    Article  Google Scholar 

  43. Debussche, A., Temam, R.: Inertial manifolds and slow manifolds. Appl. Math. Lett. 4(4), 73–76 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Delhez, E., Nyssen, F., Golinval, J.C., Batailly, A.: Reduced order modeling of blades with geometric nonlinearities and contact interactions. J. Sound Vib. 500, 116037 (2021)

    Article  Google Scholar 

  45. Denis, V., Jossic, M., Giraud-Audine, C., Chomette, B., Renault, A., Thomas, O.: Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form. Mech. Syst. Signal Process. 106, 430–452 (2018)

    Article  Google Scholar 

  46. de la Llave, R.: Invariant manifolds associated to nonresonant spectral subspaces. J. Stat. Phys. 87(1–2), 211–249 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. de la Llave, R., Kogelbauer, F.: Global persistence of Lyapunov subcenter manifolds as spectral submanifolds under dissipative perturbations. SIAM J. Appl. Dyn. Syst. 18(4), 2099–2142 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Dimitriadis, G.: Introduction to Nonlinear Aeroelasticity. Wiley, Hoboken (2017)

    Book  Google Scholar 

  49. Dou, S., Strachan, B.S., Shaw, S.W., Jensen, J.S.: Structural optimization for nonlinear dynamic response. Philos. Trans. R. Soc. A 373, 20140408 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ducceschi, M., Cadot, O., Touzé, C., Bilbao, S.: Dynamics of the wave turbulence spectrum in vibrating plates: a numerical investigation using a conservative finite difference scheme. Physica D 280–281, 73–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Dulac, H.: Solutions d’un système d’équations différentielles dans le voisinage de valeurs singulières. Bulletin de la Société Mathématique de France 40, 324–383 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  52. Düring, G., Josserand, C., Rica, S.: Weak turbulence for a vibrating plate: can one hear a Kolmogorov spectrum? Phys. Rev. Lett. 97, 025503 (2006)

    Article  Google Scholar 

  53. Düring, G., Josserand, C., Rica, S.: Wave turbulence theory of elastic plates. Physica D 347, 42–73 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Electricité de France: Finite element \({{code\_aster}}\), analysis of structures and thermomechanics for studies and research. Open source on www.code-aster.org (1989–2021)

  55. Elliott, A.J., Cammarano, A., Neild, S.A., Hill, T.L., Wagg, D.J.: Comparing the direct normal form and multiple scales methods through frequency detuning. Nonlinear Dyn. 94, 2919–2935 (2018)

    Article  MATH  Google Scholar 

  56. Elphick, C., Iooss, G., Tirapegui, E.: Normal form reduction for time-periodically driven differential equations. Phys. Lett. A 120(9), 459–463 (1987)

    Article  MathSciNet  Google Scholar 

  57. Elphick, C., Tirapegui, E., Brachet, M., Coullet, P., Iooss, G.: A simple global characterization for normal forms of singular vector fields. Physica D 29(1), 95–127 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  58. Fallahpasand, S., Dardel, M.: Piezoelectric energy harvesting from highly flexible cantilever beam. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 233(1), 71–92 (2019)

    Google Scholar 

  59. Foias, C., Jolly, M., Kevrekidis, I., Sell, G., Titi, E.: On the computation of inertial manifolds. Phys. Lett. A 131(7), 433–436 (1988)

    Article  MathSciNet  Google Scholar 

  60. Foias, C., Sell, G., Titi, E.: Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations. J. Dyn. Differ. Equ. 1(2), 199–244 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  61. Frangi, A., Gobat, G.: Reduced order modelling of the non-linear stiffness in MEMS resonators. Int. J. Non-Linear Mech. 116, 211–218 (2019)

    Article  Google Scholar 

  62. Frangi, A., Opreni, A., Boni, N., Fedeli, P., Carminati, R., Merli, M., Mendicino, G.: Nonlinear response of PZT-actuated resonant micromirrors. J. Microelectromech. Syst. 29(6), 1421–1430 (2020)

    Article  Google Scholar 

  63. Gabale, A.P., Sinha, S.: A direct analysis of nonlinear systems with external periodic excitations via normal forms. Nonlinear Dyn. 55, 79–93 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Gabale, A.P., Sinha, S.C.: Model reduction of nonlinear systems with external periodic excitations via construction of invariant manifolds. J. Sound Vib. 330(11), 2596–2607 (2011)

    Article  Google Scholar 

  65. Georgiades, F., Peeters, M., Kerschen, G., Golinval, J.C., Ruzzene, M.: Modal analysis of a nonlinear periodic structure with cyclic symmetry. AIAA J. 47(4), 1014–1025 (2009)

    Article  Google Scholar 

  66. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Hoboken (2001)

    Google Scholar 

  67. Givois, A., Deü, J.F., Thomas, O.: Dynamics of piezoelectric structures with geometric nonlinearities: a non-intrusive reduced order modelling strategy. Comput. Struct. 253, 106575 (2021). https://doi.org/10.1016/j.compstruc.2021.106575

  68. Givois, A., Giraud-Audine, C., Deü, J.F., Thomas, O.: Experimental analysis of nonlinear resonances in piezoelectric plates with geometric nonlinearities. Nonlinear Dyn. 102, 1451–1462 (2020)

    Article  Google Scholar 

  69. Givois, A., Grolet, A., Thomas, O., Deü, J.F.: On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models. Nonlinear Dyn. 97(2), 1747–1781 (2019)

    Article  MATH  Google Scholar 

  70. Givois, A., Tan, J.J., Touzé, C., Thomas, O.: Backbone curves of coupled cubic oscillators in one-to-one internal resonance: bifurcation scenario, measurements and parameter identification. Meccanica 55, 581–503 (2020)

    Article  MathSciNet  Google Scholar 

  71. Gobat, G., Guillot, L., Frangi, A., Cochelin, B., Touzé, C.: Backbone curves, Neimark–Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1:2 internal resonance and frequency combs in MEMS. Meccanica 56, 1937–1969 (2021). https://doi.org/10.1007/s11012-021-01351-1

  72. Gonçalves, P., Silva, F., Del Prado, Z.: Low-dimensional models for the nonlinear vibration analysis of cylindrical shells based on a perturbation procedure and proper orthogonal decomposition. J. Sound Vib. 315, 641–663 (2008)

    Article  Google Scholar 

  73. Gordon, W.B.: A theorem on the existence of periodic solutions to Hamiltonian systems with convex potential. J. Differ. Equ. 10, 324–335 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  74. Gözcü, O., Dou, S.: Reduced order models for wind turbine blades with large deflections. J. Phys. Conf. Ser. Turbine Technol. 1618, 052046 (2020)

    Article  Google Scholar 

  75. Grolet, A., Thouverez, F.: On the use of the proper generalised decomposition for solving nonlinear vibration problems. In: ASME 2012 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, pp. 913–920 (2012). No. 45202

  76. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  77. Guillot, L., Cochelin, B., Vergez, C.: A generic and efficient Taylor series-based continuation method using a quadratic recast of smooth nonlinear systems. Int. J. Numer. Methods Eng. 119(4), 261–280 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  78. Guillot, L., Lazarus, A., Thomas, O., Vergez, C., Cochelin, B.: A purely frequency based Floquet–Hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems. J. Comput. Phys. 416, 109477 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  79. Hall, K.C., Kielb, R.E., Thomas, J.P.: Unsteady Aerodynamics. Aeroacoustics and Aeroelasticity of Turbomachines. Springer, New York (2006)

    Book  Google Scholar 

  80. Haller, G., Ponsioen, S.: Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn. 86(3), 1493–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  81. Haller, G., Ponsioen, S.: Exact model reduction by a slow–fast decomposition of nonlinear mechanical systems. Nonlinear Dyn. 90, 617–647 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  82. Haragus, M., Iooss, G.: Local bifurcations, center manifolds, and normal forms in infinite dimensional systems. Springer-Verlag London, (2011). https://doi.org/10.1007/978-0-85729-112-7. ISBN: 978-0-85729-112-7

  83. Haro, A., Canadell, M., Figueras, J.L., Luque, A., Mondelo, J.M.: The Parameterization Method for Invariant Manifolds. From Rigorous Results to Effective Computations. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  84. Hollkamp, J.J., Gordon, R.W.: Reduced-order models for non-linear response prediction: implicit condensation and expansion. J. Sound Vib. 318, 1139–1153 (2008)

    Article  Google Scholar 

  85. Hollkamp, J.J., Gordon, R.W., Spottswood, S.M.: Non-linear modal models for sonic fatigue response prediction: a comparison of methods. J. Sound Vib. 284, 1145–1163 (2005)

    Article  Google Scholar 

  86. Holmes, P., Lumley, J., Berkooz, G.: Coherent Structures. Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  87. Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  88. Humbert, T., Cadot, O., Düring, G., Josserand, C., Rica, S., Touzé, C.: Wave turbulence in vibrating plates?: the effect of damping. EPL 102, 30002 (2013)

    Article  Google Scholar 

  89. Huseyin, K., Zhang, W.: On the normal forms associated with high dimensional systems. J. Vib. Acoust. 123(2), 157–169 (2000)

    Article  Google Scholar 

  90. Idelsohn, S.R., Cardona, A.: A load-dependent basis for reduced nonlinear structural dynamics. Comput. Struct. 20, 203–210 (1985)

    Article  MATH  Google Scholar 

  91. Idelsohn, S.R., Cardona, A.: A reduction method for nonlinear structural dynamic analysis. Comput. Methods Appl. Mech. Eng. 49(3), 253–279 (1985)

    Article  MATH  Google Scholar 

  92. Iooss, G.: Global characterization of the normal form for a vector field near a closed orbit. J. Differ. Equ. 76, 47–76 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  93. Iooss, G., Adelmeyer, M.: Topics in Bifurcation Theory, 2nd edn. World Scientific, New York (1998)

    MATH  Google Scholar 

  94. Iooss, G., Lombardi, E.: Polynomial normal forms with exponentially small remainder for analytic vector fields. J. Differ. Equ. 212, 1–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  95. Iooss, G., Lombardi, E.: Approximate invariant manifolds up to exponentially small terms. J. Differ. Equ. 248(6), 1410–1431 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  96. Iurasov, V., Mattei, P.O.: Bistable nonlinear damper based on a buckled beam configuration. Nonlinear Dyn. 99, 1801–1822 (2020)

    Article  Google Scholar 

  97. Jain, S., Haller, G.: How to compute invariant manifolds and their reduced dynamics in high-dimensional finite-element models? Nonlinear Dyn. (2021) (submitted)

  98. Jain, S., Tiso, P.: Simulation-free hyper-reduction for geometrically nonlinear structural dynamics: a quadratic manifold lifting approach. ASME. J. Comput. Nonlinear Dyn. 13(7), 071003 (2018)

    Article  Google Scholar 

  99. Jain, S., Tiso, P.: Model order reduction for temperature-dependent nonlinear mechanical systems: a multiple scales approach. J. Sound Vib. 465, 115022 (2020)

    Article  Google Scholar 

  100. Jain, S., Tiso, P., Haller, G.: Exact nonlinear model reduction for a von Kàrmàn beam: slow-fast decomposition and spectral submanifolds. J. Sound Vib. 423, 195–211 (2018)

    Article  Google Scholar 

  101. Jain, S., Tiso, P., Rutzmoser, J.B., Rixen, D.J.: A quadratic manifold for model order reduction of nonlinear structural dynamics. Comput. Struct. 188, 80–94 (2017)

    Article  Google Scholar 

  102. Jézéquel, L., Lamarque, C.H.: Analysis of non-linear dynamical systems by the normal form theory. J. Sound Vib. 149(3), 429–459 (1991)

    Article  Google Scholar 

  103. Jiang, D., Pierre, C., Shaw, S.: Large-amplitude non-linear normal modes of piecewise linear systems. J. Sound Vib. 272(3), 869–891 (2004)

    Article  MathSciNet  Google Scholar 

  104. Jiang, D., Pierre, C., Shaw, S.: The construction of non-linear normal modes for systems with internal resonance. Int. J. Non-Linear Mech. 40(5), 729–746 (2005)

    Article  MATH  Google Scholar 

  105. Jiang, D., Pierre, C., Shaw, S.: Nonlinear normal modes for vibratory systems under harmonic excitation. J. Sound Vib. 288(4), 791–812 (2005)

    Article  Google Scholar 

  106. Jossic, M., Chomette, B., Denis, V., Thomas, O., Mamou-Mani, A., Roze, D.: Effects of internal resonances in the pitch glide of Chinese gongs. J. Acoust. Soc. Am. 144(1), 431–442 (2018)

    Article  Google Scholar 

  107. Kambouchev, N., Noels, L., Radovitzky, R.: Nonlinear compressibility effects in fluid-structure interaction and their implications on the air-blast loading of structures. J. Appl. Phys. 100(6), 063519 (2006)

    Article  Google Scholar 

  108. Karhunen, K.: Uber lineare methoden in der wahrscheinlichtkeitsrechnung. Ann. Acad. Sci. Fenn. Ser. AI Math. Phys. 37, 3–79 (1946)

    Google Scholar 

  109. Kawahara, G., Uhlmann, M., van Veen, L.: The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44(1), 203–225 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  110. Kelley, A.F.: On the Liapounov subcenter manifold. J. Math. Anal. Appl. 18(3), 472–478 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  111. Kelley, A.F.: The stable, center-stable, center, center-unstable and unstable manifolds. J. Differ. Equ. 3, 546–570 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  112. Kelley, A.F.: Analytic two-dimensional subcenter manifolds for systems with an integral. Pac. J. Math. 29, 335–350 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  113. Kerschen, G., Golinval, J.C., Vakakis, A.F., Bergmann, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41(1), 147–169 (2005)

    Article  MathSciNet  Google Scholar 

  114. Kerschen, G., Peeters, M., Golinval, J.C., Stéphan, C.: Nonlinear modal analysis of a full-scale aircraft. J. Aircr. 50(5), 1409–1419 (2013)

    Article  Google Scholar 

  115. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Non-linear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    Article  Google Scholar 

  116. Kim, E., Cho, M.: Equivalent model construction for a non-linear dynamic system based on an element-wise stiffness evaluation procedure and reduced analysis of the equivalent system. Comput. Mech. 60, 709–724 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  117. Kim, K., Khanna, V., Wang, X.Q., Mignolet, M.P.: Nonlinear reduced order modeling of flat cantilevered structures. In: Proceedings of the 50th Structures, Structural Dynamics, and Materials Conference, AIAA Paper AIAA-2009-2492. May 4–7, Palm Springs, California (2009)

  118. Kim, K., Radu, A.G., Wang, X., Mignolet, M.P.: Nonlinear reduced order modeling of isotropic and functionally graded plates. Int. J. Non-Linear Mech. 49, 100–110 (2013)

    Article  Google Scholar 

  119. King, M., Vakakis, A.: Energy-based formulation for computing nonlinear normal modes in undamped continuous systems. J. Vib. Acoust. 116, 332–340 (1994)

    Article  Google Scholar 

  120. King, M., Vakakis, A.: An energy-based approach to computing resonant nonlinear normal modes. J. Appl. Mech. 63(3), 810–819 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  121. Kogelbauer, F., Haller, G.: Rigorous model reduction for a damped-forced nonlinear beam model: an infinite-dimensional analysis. J. Nonlinear Sci. 28, 1109–1150 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  122. Kosambi, D.: Statistics in function space. J. Indian Math. Soc. 7, 76–88 (1943)

    MathSciNet  MATH  Google Scholar 

  123. Krack, M., Salles, L., Thouverez, F.: Vibration prediction of bladed disks coupled by friction joints. Arch. Comput. Methods Eng. 24, 589–636 (2017)

    Article  MATH  Google Scholar 

  124. Krysl, P., Lall, S., Marsden, J.: Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Methods Eng. 51, 479–504 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  125. Kuether, R.J., Allen, M.S.: A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models. Mech. Syst. Signal Process. 46(1), 1–15 (2014)

    Article  Google Scholar 

  126. Kuether, R.J., Deaner, B.J., Hollkamp, J.J., Allen, M.S.: Evaluation of geometrically nonlinear reduced-order models with nonlinear normal modes. AIAA J. 53(11), 3273–3285 (2015)

    Article  Google Scholar 

  127. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  128. Lacarbonara, W.: Direct treatment and discretizations of non-linear spatially continuous systems. J. Sound Vib. 221(5), 849–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  129. Lacarbonara, W.: Nonlinear Structural Mechanics. Theory, Dynamical Phenomena and Modelling. Springer, New York (2013)

    Book  MATH  Google Scholar 

  130. Lacarbonara, W., Camillacci, R.: Nonlinear normal modes of structural systems via asymptotic approach. Int. J. Solids Struct. 41(20), 5565–5594 (2004)

    Article  MATH  Google Scholar 

  131. Lacarbonara, W., Nayfeh, A.H., Kreider, W.: Experimental validation of reduction methods for nonlinear vibrations of distributed-parameter systems: analysis of a buckled beam. Nonlinear Dyn. 17, 95–117 (1998)

    Article  MATH  Google Scholar 

  132. Lacarbonara, W., Yabuno, H.: Refined models of elastic beams undergoing large in-plane motions: theory and experiment. Int. J. Solids Struct. 43, 5066–5084 (2006)

    Article  MATH  Google Scholar 

  133. Lai, V.V., Chiello, O., Brunel, J.F., Dufrénoy, P.: Full finite element models and reduction strategies for the simulation of friction-induced vibrations of rolling contact systems. J. Sound Vib. 444, 197–215 (2019)

    Article  Google Scholar 

  134. Lamarque, C.H., Touzé, C., Thomas, O.: An upper bound for validity limits of asymptotic analytical approaches based on normal form theory. Nonlinear Dyn. 70(3), 1931–1949 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  135. Lan, Y., Mezić, I.: Linearization in the large of nonlinear systems and Koopman operator spectrum. Physica D 242(1), 42–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  136. Landau, L., Lifschitz, E.: Theory of Elasticity, 3rd edn. Elsevier Butterworth Heinemann, Amsterdam (1986)

    Google Scholar 

  137. Lang, H., Arnold, M.: Numerical aspects in the dynamic simulation of geometrically exact rods. Appl. Numer. Math. 62, 1411–1427 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  138. Lazarus, A., Thomas, O., Deü, J.F.: Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS. Finite Elem. Anal. Des. 49, 35–51 (2012)

    Article  MathSciNet  Google Scholar 

  139. Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79, 1727–1743 (2015)

    Article  Google Scholar 

  140. Legrand, M., Jiang, D., Pierre, C., Shaw, S.: Nonlinear normal modes of a rotating shaft based on the invariant manifold method. Int. J. Rotating Mach. 10(4), 319–335 (2004)

    Article  Google Scholar 

  141. Legrand, M., Junca, S., Heng, S.: Nonsmooth modal analysis of a \(N\)-degree-of-freedom system undergoing a purely elastic impact law. Commun. Nonlinear Sci. Numer. Simul. 45, 190–219 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  142. Leine, R., van Campen, D.: Bifurcation phenomena in non-smooth dynamical systems. Eur. J. Mech. A Solids 25(4), 595–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  143. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, Berlin (2013)

    MATH  Google Scholar 

  144. Lenci, S., Clementi, F., Kloda, L., Warminski, J., Rega, G.: Longitudinal-transversal internal resonances in Timoshenko beams with an axial elastic boundary condition. Nonlinear Dyn. 103, 3489–3513 (2021)

    Article  Google Scholar 

  145. Leung, A., Zhang, Q.: Complex normal form for strongly non-linear vibration system exemplified by Duffing-van der Pol equation. J. Sound Vib. 213(5), 907–914 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  146. Leung, A., Zhang, Q.: Higher order normal form and period averaging. J. Sound Vib. 217(5), 795–806 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  147. Leung, A., Zhang, Q.: Normal form computation without central manifold reduction. J. Sound Vib. 266(2), 261–279 (2003)

    Article  MathSciNet  Google Scholar 

  148. Li, L.L., Polunin, P.M., Dou, S., Shoshani, O., Strachan, B.S., Jensen, J.S., Shaw, S.W., Turner, K.L.: Tailoring the nonlinear response of mems resonators using shape optimization. Appl. Phys. Lett. 110, 081902 (2017)

    Article  Google Scholar 

  149. Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its applications. Part I: theory. J. Sound Vib. 252(3), 527–544 (2002)

    Article  MATH  Google Scholar 

  150. Lin, Z., Lee, K., Lu, P., Lim, S., Liang, Y.: The relationship between eigenfunctions of Karhunen–Loève decomposition and the modes of distributed parameter vibration system. J. Sound Vib. 256(4), 791–799 (2002)

    Article  Google Scholar 

  151. Liu, W., Haller, G.: Inertial manifolds and completeness of eigenmodes for unsteady magnetic dynamos. Physica D 194(3), 297–319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  152. Liu, X., Wagg, D.J.: Simultaneous normal form transformation and model-order reduction for systems of coupled nonlinear oscillators. Proc. R. Soc. A 475, 20190042 (2019)

    Article  MathSciNet  Google Scholar 

  153. Lu, K., Jin, Y., Chen, Y., Yang, Y., Hou, L., Zhang, Z., Li, Z., Fu, C.: Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems. Mech. Syst. Signal Process. 123, 264–297 (2019)

    Article  Google Scholar 

  154. Lülf, F., Tran, D.M., Matthies, H.G., Ohayon, R.: An integrated method for the transient solution of reduced order models of geometrically nonlinear structures. Comput. Mech. 55, 327–344 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  155. Lyapunov, A.: Problème général de la stabilité du mouvement. Annales de la faculté des sciences de Toulouse Série 2(9), 203–474 (1907)

    Google Scholar 

  156. Mahdiabadi, M.K., Tiso, P., Brandt, A., Rixen, D.: A non-intrusive model-order reduction of geometrically nonlinear structural dynamics using modal derivatives. Mech. Syst. Signal Process. 147, 107126 (2021)

    Article  Google Scholar 

  157. Mam, K., Peigney, M., Siegert, D.: Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations. J. Sound Vib. 389, 411–437 (2017)

    Article  Google Scholar 

  158. Mangussi, F., Zanette, D.H.: Resonance in a vibrating beam: a zoo of nonlinear resonance peaks. PLoS ONE 11(9), e0162365 (2016)

    Article  Google Scholar 

  159. Manneville, P.: Dissipative Structures and Weak Turbulence. Academic Press, Cambridge (1990)

    MATH  Google Scholar 

  160. Manolas, D.I., Riziotis, V.A., Voutsinas, S.G.: Assessing the importance of geometric nonlinear effects in the prediction of wind turbine blade loads. J. Comput. Nonlinear Dyn. 10(4) (2015)

  161. Marconi, J., Tiso, P., Braghin, F.: A nonlinear reduced order model with parametrized shape defects. Comput. Methods Appl. Mech. Eng. 360, 112785 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  162. Marconi, J., Tiso, P., Quadrelli, D.E., Braghin, F.: A higher order parametric nonlinear reduced order model for imperfect structures using Neumann expansion. Nonlinear Dyn. 104, 3039–3063 (2021)

    Article  Google Scholar 

  163. Martin, A., Thouverez, F.: Dynamic analysis and reduction of a cyclic symmetric system subjected to geometric nonlinearities. J. Eng. Gas Turbines Power 141, 041027 (2019)

    Article  Google Scholar 

  164. Massimino, G., Colombo, A., Ardito, R., Quaglia, F., Corigliano, A.: Piezo-micro-ultrasound-transducers for air-coupled arrays: modeling and experiments in the linear and non-linear regimes. Extreme Mech. Lett. 40, 100968 (2020)

    Article  Google Scholar 

  165. Matthies, H.G., Steindorf, J.: Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction. Comput. Struct. 80(27), 1991–1999 (2002)

    Article  Google Scholar 

  166. Mauroy, A., Mezić, I.: Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control 61(11), 3356–3369 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  167. Mazzilli, C.E.N., Monticelli, G.C., Galan Neto, N.A.: Reduced-order modelling in non-linear dynamics: an approach based on non-linear modes. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225(10), 2354–2368 (2011)

    Article  Google Scholar 

  168. Mazzilli, C.E.N., Soares, M.E., Baracho Neto, O.G.P.: Non-linear normal modes of a simply supported beam: continuous system and finite-element models. Comput. Struct. 82(31), 2683–2691 (2004)

    Article  Google Scholar 

  169. Mazzilli, C.E.N., Soares, M.E.S., Baracho Neto, O.G.P.: Reduction of finite-element models of planar frames using non-linear normal modes. Int. J. Solids Struct. 38(10), 1993–2008 (2001)

    Article  MATH  Google Scholar 

  170. Mc Ewan, M., Wright, J., Cooper, J., Leung, A.: A finite element/modal technique for nonlinear plate and stiffened panel response prediction. In: 19th AIAA Applied Aerodynamics Conference (2001). https://doi.org/10.2514/6.2001-1595

  171. Mc Ewan, M.I.: A combined modal/finite element technique for the non-linear dynamic simulation of aerospace structures. Ph.D. thesis, University of Manchester (2001)

  172. Mehner, J.E., Gabbay, L.D., Senturia, S.D.: Computer-aided generation of nonlinear reduced-order dynamic macromodels, II: stress-stiffened case. J. Microelectromech. Syst. 9(2), 270–278 (2000)

    Article  Google Scholar 

  173. Meirovitch, L.: Computational Methods in Structural Dynamics. Sijthoff and Noordhoff, Amsterdam (1980)

    MATH  Google Scholar 

  174. Meirovitch, L.: Fundamentals of Vibration. McGraw Hill, Singapore (2001)

    Book  Google Scholar 

  175. Metoui, S., Pruliere, E., Ammar, A., Dau, F.: A reduced model to simulate the damage in composite laminates under low velocity impact. Comput. Struct. 199, 34–45 (2018)

    Article  Google Scholar 

  176. Meyrand, L., Sarrouy, E., Cochelin, B., Ricciardi, G.: Nonlinear normal mode continuation through a proper generalized decomposition approach with modal enrichment. J. Sound Vib. 443, 444–459 (2019)

    Article  Google Scholar 

  177. Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  178. Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45(1), 357–378 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  179. Mian, H.H., Wang, G., Ye, Z.Y.: Numerical investigation of structural geometric nonlinearity effect in high-aspect-ratio wing using CFD/CSD coupled approach. J. Fluids Struct. 49, 186–201 (2014)

    Article  Google Scholar 

  180. Mielke, A.: Hamiltonian and Lagrangian Flows on Center Manifolds. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  181. Mignolet, M., Soize, C.: Stochastic reduced-order models for uncertain geometrically nonlinear dynamical systems. Comput. Methods Appl. Mech. Eng. 197, 3951–3963 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  182. Mignolet, M.P., Przekop, A., Rizzi, S.A., Spottswood, S.M.: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. J. Sound Vib. 332, 2437–2460 (2013)

    Article  Google Scholar 

  183. Miquel, B., Alexakis, A., Mordant, N.: The role of dissipation in flexural wave turbulence: from experimental spectrum to Kolmogorov-Zakharov spectrum. Phys. Rev. E 89(6), 062925 (2014)

    Article  Google Scholar 

  184. Monteil, M., Thomas, O., Touzé, C.: Identification of mode couplings in nonlinear vibrations of the steelpan. Appl. Acoust. 89, 1–15 (2015)

    Article  Google Scholar 

  185. Mordant, N.: Are there waves in elastic wave turbulence? Phys. Rev. Lett. 100(23), 234505 (2008)

    Article  Google Scholar 

  186. Mordant, N.: Fourier analysis of wave turbulence in a thin elastic plate. Eur. Phys. J. B 76, 537–545 (2010)

    Article  MATH  Google Scholar 

  187. Morin, B., Legay, A., Deü, J.F.: Reduced order models for dynamic behavior of elastomer damping devices. Finite Elem. Anal. Des. 143, 66–75 (2018)

    Article  Google Scholar 

  188. Muncaster, R.G.: Invariant manifolds in mechanics I: the general construction of coarse theories from fine theories. Arch. Ration. Mech. Anal. 84(4), 353–373 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  189. Muncaster, R.G.: Invariant manifolds in mechanics II: zero-dimensional elastic bodies with directors. Arch. Ration. Mech. Anal. 84(4), 375–392 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  190. Muravyov, A.A., Rizzi, S.A.: Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures. Comput. Struct. 81(15), 1513–1523 (2003)

    Article  Google Scholar 

  191. Murdock, J.: Normal Forms and Unfoldings for Local Dynamical Systems. Springer Monographs in Mathematics. Springer, New York (2003)

    Book  MATH  Google Scholar 

  192. Nayfeh, A.H.: Method of Normal Forms. Wiley, New York (1993)

    MATH  Google Scholar 

  193. Nayfeh, A.H.: On direct methods for constructing nonlinear normal modes of continuous systems. J. Vib. Control 1, 389–430 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  194. Nayfeh, A.H.: Reduced-order models of weakly nonlinear spatially continuous systems. Nonlinear Dyn. 16, 105–125 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  195. Nayfeh, A.H.: Nonlinear Interactions: Analytical. Computational and Experimental Methods. Wiley Series in Nonlinear Science. Wiley, New-York (2000)

    Google Scholar 

  196. Nayfeh, A.H., Chin, C., Nayfeh, S.A.: On nonlinear normal modes of systems with internal resonance. Trans. ASME J. Vib. Acoust. 118, 340–345 (1996)

    Article  Google Scholar 

  197. Nayfeh, A.H., Lacarbonara, W.: On the discretization of distributed-parameter systems with quadratic and cubic non-linearities. Nonlinear Dyn. 13, 203–220 (1997)

    Article  MATH  Google Scholar 

  198. Nayfeh, A.H., Lacarbonara, W., Chin, C.M.: Nonlinear normal modes of buckled beams: three-to-one and one-to-one internal resonances. Nonlinear Dyn. 18, 253–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  199. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  200. Nayfeh, A.H., Nayfeh, S.A.: On nonlinear normal modes of continuous systems. Trans. ASME J. Vib. Acoust. 116, 129–136 (1994)

    Article  Google Scholar 

  201. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  202. Nazarenko, S.: Wave Turbulence. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  203. Neild, S.A., Champneys, A.R., Wagg, D.J., Hill, T.L., Cammarano, A.: The use of normal forms for analysing nonlinear mechanical vibrations. Proc. R. Soc. A. 373, 20140404 (2015)

    MathSciNet  MATH  Google Scholar 

  204. Neild, S.A., Wagg, D.J.: Applying the method of normal forms to second-order nonlinear vibration problems. Proc. R. Soc. A. 467, 1141–1163 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  205. Neukirch, S., Yavari, M., Challamel, N., Thomas, O.: Comparison of the von Kármán and Kirchhoff models for the post-buckling and vibrations of elastic beams. J. Theor. Comput. Appl. Mech. (2021) (Accepted for publication)

  206. Newell, A.C., Rumpf, B.: Wave turbulence. Annu. Rev. Fluid Mech. 43, 59–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  207. Nickell, R.: Nonlinear dynamics by mode superposition. Comput. Methods Appl. Mech. Eng. 7(1), 107–129 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  208. Nicolaidou, E., Hill, T.L., Neild, S.A.: Indirect reduced-order modelling: using nonlinear manifolds to conserve kinetic energy. Proc. R. Soc. A. 476, 20200589 (2021)

    Article  MathSciNet  Google Scholar 

  209. Nicolaidou, E., Melanthuru, V.R., Hill, T.L., Neild, S.A.: Accounting for quasi-static coupling in nonlinear dynamic reduced-order models. J. Comput. Nonlinear Dyn. 15(7), 071002 (2020)

  210. Noël, J., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)

    Article  Google Scholar 

  211. Noël, J.P., Renson, L., Grappasonni, C., Kerschen, G.: Identification of nonlinear normal modes of engineering structures under broadband forcing. Mech. Syst. Signal Process. 74, 95–110 (2016)

    Article  Google Scholar 

  212. Noreland, D., Bellizzi, S., Vergez, C., Bouc, R.: Nonlinear modes of clarinet-like musical instruments. J. Sound Vib. 324(3), 983–1002 (2009)

    Article  Google Scholar 

  213. Opreni, A., Vizzaccaro, A., Frangi, A., Touzé, C.: Model order reduction based on direct normal form: application to large finite element MEMS structures featuring internal resonance. Nonlinear Dyn. (2021). (In Press)

  214. Ostiguy, G.L., Sassi, S.: Effects of initial geometric imperfections on dynamic behaviour of rectangular plates. Non-linear Dyn. 3, 165–181 (1992)

    Article  Google Scholar 

  215. Pai, P.F.: Time-frequency characterization of nonlinear normal modes and challenges in nonlinearity identification of dynamical systems. Mech. Syst. Signal Process. 25(7), 2358–2374 (2011)

    Article  Google Scholar 

  216. Patil, M., Hodges, D.: On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings. J. Fluids Struct. 19(7), 905–915 (2004)

    Article  Google Scholar 

  217. Pecelli, G., Thomas, E.S.: Normal modes, uncoupling, and stability for a class of nonlinear oscillators. Q. Appl. Math. 37(3), 281–301 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  218. Peeters, M., Kerschen, G., Golinval, J.: Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mech. Syst. Signal Process. 25(4), 1227–1247 (2011)

    Article  Google Scholar 

  219. Perez, R., Wang, X.Q., Mignolet, M.P.: Nonlinear reduced-order models for thermoelastodynamic response of isotropic and functionally graded panels. AIAA J. 49(3), 630–641 (2011)

    Article  Google Scholar 

  220. Perez, R., Wang, X.Q., Mignolet, M.P.: Non-intrusive structural dynamic reduced order modeling for large deformations: enhancements for complex structures. J. Comput. Nonlinear Dyn. 9(3) (2014)

  221. Perez, R., Wang, X.Q., Mignolet, M.P.: Prediction of displacement and stress fields of a notched panel with geometric nonlinearity by reduced order modeling. J. Sound Vib. 333(24), 6572–6589 (2014)

    Article  Google Scholar 

  222. Pesheck, E.: Reduced-order modeling of nonlinear structural systems using nonlinear normal modes and invariant manifolds. Ph.D. thesis, University of Michigan (2000)

  223. Pesheck, E., Boivin, N., Pierre, C., Shaw, S.: Nonlinear modal analysis of structural systems using multi-mode invariant manifolds. Nonlinear Dyn. 25, 183–205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  224. Pesheck, E., Pierre, C., Shaw, S.: Accurate reduced-order models for a simple rotor blade model using nonlinear normal modes. Math. Comput. Modell. 33(10), 1085–1097 (2001)

    Article  MATH  Google Scholar 

  225. Pesheck, E., Pierre, C., Shaw, S.: A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J. Sound Vib. 249(5), 971–993 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  226. Pesheck, E., Pierre, C., Shaw, S.W.: Modal reduction of a nonlinear rotating beam through nonlinear normal modes. J. Vib. Acoust. 124(2), 229–236 (2002)

    Article  Google Scholar 

  227. Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Gauthiers-Villars, Paris (1892)

    MATH  Google Scholar 

  228. Ponsioen, S., Jain, S., Haller, G.: Model reduction to spectral submanifolds and forced-response calculation in high-dimensional mechanical systems. J. Sound Vib. 488, 115640 (2020)

    Article  Google Scholar 

  229. Ponsioen, S., Pedergnana, T., Haller, G.: Automated computation of autonomous spectral submanifolds for nonlinear modal analysis. J. Sound Vib. 420, 269–295 (2018)

    Article  Google Scholar 

  230. Ponsioen, S., Pedergnana, T., Haller, G.: Analytic prediction of isolated forced response curves from spectral submanifolds. Nonlinear Dyn. 98, 2755–2773 (2019)

    Article  MATH  Google Scholar 

  231. Qalandar, K.R., Strachan, B.S., Gibson, B., Sharma, M., Ma, A., Shaw, S.W., Turner, K.L.: Frequency division using a micromechanical resonance cascade. Appl. Phys. Lett. 105, 244103 (2014)

    Article  Google Scholar 

  232. Quaegebeur, S., Chouvion, B., Thouverez, F., Berthe, L.: Energy transfer between nodal diameters of cyclic symmetric structures exhibiting polynomial nonlinearities: cyclic condition and analysis. Mech. Syst. Signal Process. 139, 106604 (2020)

    Article  Google Scholar 

  233. Rand, R.: A direct method for non-linear normal modes. Int. J. Non-Linear Mech. 9, 363–368 (1974)

    Article  MATH  Google Scholar 

  234. Redkar, S., Sinha, S.C.: A direct approach to order reduction of nonlinear systems subjected to external periodic excitations. ASME J. Comput. Nonlinear Dyn. 3(3), 031011 (2008)

    Article  Google Scholar 

  235. Rega, G., Lacarbonara, W., Nayfeh, A.H.: Reduction methods for nonlinear vibrations of spatially continuous systems with initial curvature. Solid Mech. Its Appl. 77, 235–246 (2000)

    MathSciNet  MATH  Google Scholar 

  236. Renson, L., Deliége, G., Kerschen, G.: An effective finite-element-based method for the computation of nonlinear normal modes of nonconservative systems. Meccanica 49, 1901–1916 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  237. Renson, L., Kerschen, G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 364, 177–206 (2016)

    Article  Google Scholar 

  238. Ribeiro, P., Chuaqui, T.R.C.: Non-linear modes of vibration of single-layer non-local graphene sheets. Int. J. Mech. Sci. 150, 727–743 (2019)

    Article  Google Scholar 

  239. Ribeiro, P., Thomas, O.: Non-linear modes of vibration and internal resonances in non-local beams. J. Comput. Nonlinear Dyn. 12(3), 031017 (2017)

    Article  Google Scholar 

  240. Roberts, A.J.: The utility of an invariant manifold description of the evolution of a dynamical system. SIAM J. Math. Anal. 20(6), 1447–1458 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  241. Roberts, A.J.: The invariant manifold of beam deformations. Part 1: the simple circular rod. J. Elast. 30, 1–54 (1993)

    Article  MATH  Google Scholar 

  242. Roberts, A.J.: Low-dimensional modelling of dynamics via computer algebra. Comput. Phys. Commun. 100(3), 215–230 (1997)

    Article  MATH  Google Scholar 

  243. Rosenberg, R.M.: The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech. 29, 7–14 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  244. Rutzmoser, J.B., Rixen, D.J., Tiso, P., Jain, S.: Generalization of quadratic manifolds for reduced order modeling of nonlinear structural dynamics. Comput. Struct. 192, 196–209 (2017)

    Article  Google Scholar 

  245. Sajadi, B., Wahls, S., van Hemert, S., Steeneken, P.G., Alijani, F.: Nonlinear dynamic identification of graphene’s elastic modulus via reduced order modeling of atomistic simulations. J. Mech. Phys. Solids 122, 161–176 (2019)

    Article  MathSciNet  Google Scholar 

  246. Sampaio, R., Soize, C.: Remarks on the efficiency of POD for model reduction in non-linear dynamics of continuous elastic systems. Int. J. Numer. Methods Eng. 72(1), 22–45 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  247. Sandstede, B., Theerakarn, T.: Regularity of center manifolds via the graph transform. J. Dyn. Differ. Equ. 1–18 (2015)

  248. Sarah, H.N., Zega, V., Li, M., Ahn, C.H., Corigliano, A., Kenny, T.W., Horsley, D.A.: Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope. Sci. Rep. 5, 9036 (2015)

    Article  Google Scholar 

  249. Sénéchal, A.: Réduction de vibrations de structure complexe par shunts piézoélectriques. application aux turbomachine. Ph.D. thesis, Conservatoire National des Arts et Métiers (2011). In french. https://tel.archives-ouvertes.fr/tel-00862517

  250. Shami, Z.A., Giraud-Audine, C., Thomas, O.: A nonlinear piezoelectric shunt absorber with a 2:1 internal resonance: theory. Mech. Syst. Signal Process. (2021) (Submitted)

  251. Shaw, S.W.: An invariant manifold approach to nonlinear normal modes of oscillation. J. Nonlinear Sci. 4, 419–448 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  252. Shaw, S.W., Pierre, C.: Non-linear normal modes and invariant manifolds. J. Sound Vib. 150(1), 170–173 (1991)

    Article  Google Scholar 

  253. Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85–124 (1993)

    Article  MATH  Google Scholar 

  254. Shaw, S.W., Pierre, C.: Normal modes of vibration for non-linear continuous systems. J. Sound Vib. 169(3), 85–124 (1994)

    Article  Google Scholar 

  255. Shen, Y., Béreux, N., Frangi, A., Touzé, C.: Reduced order models for geometrically nonlinear structures: assessment of implicit condensation in comparison with invariant manifold approach. Eur. J. Mech. A Solids 86, 104165 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  256. Shen, Y., Kesmia, N., Touzé, C., Vizzaccaro, A., Salles, L., Thomas, O.: Predicting the type of nonlinearity of shallow spherical shells: comparison of direct normal form with modal derivatives. In: Proceedings of NODYCON 21, Second International Nonlinear Dynamics Conference. online conference, Roma (2021)

  257. Shen, Y., Vizzaccaro, A., Kesmia, N., Yu, T., Salles, L., Thomas, O., Touzé, C.: Comparison of reduction methods for finite element geometrically nonlinear beam structures. Vibrations 4(1), 175–204 (2021)

    Article  Google Scholar 

  258. Shoshani, O., Shaw, S.W.: Resonant modal interactions in micro/nano-mechanical structures. Nonlinear Dyn (2021). (In press)

  259. Simo, J.C., Fox, D.D.: On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput. Methods Appl. Mech. Eng. 72(3), 267–304 (1989)

    Article  MATH  Google Scholar 

  260. Sinha, S., Pandiyan, R.: Analysis of quasilinear dynamical systems with periodic coefficients via Liapunov–Floquet transformation. Int. J. Non-Linear Mech. 29(5), 687–702 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  261. Sinha, S.C., Redkar, S., Butcher, E.A.: Order reduction of nonlinear systems with time periodic coefficients using invariant manifolds. J. Sound Vib. 284(3), 985–1002 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  262. Slaats, P.M.A., de Jongh, J., Sauren, A.A.H.J.: Model reduction tools for nonlinear structural dynamics. Comput. Struct. 54(6), 1155–1171 (1995)

    Article  MATH  Google Scholar 

  263. Soares, M.E.S., Mazzilli, C.E.N.: Nonlinear normal modes of planar frames discretised by the finite element method. Comput. Struct. 77(5), 485–493 (2000)

    Article  Google Scholar 

  264. Sombroek, C.S.M., Tiso, P., Renson, L., Kerschen, G.: Numerical computation of nonlinear normal modes in a modal derivative subspace. Comput. Struct. 195, 34–46 (2018)

    Article  Google Scholar 

  265. Szalai, R.: Invariant spectral foliations with applications to model order reduction and synthesis. Nonlinear Dyn. 101, 2645–2669 (2020)

    Article  Google Scholar 

  266. Szalai, R., Ehrhardt, D., Haller, G.: Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrations. Proc. R. Soc. A 473, 20160759 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  267. Tacher, A., Thouverez, F., Armand, J.: Interaction between Coriolis forces and mistuning on a cyclic symmetric structure with geometrical nonlinearity. J. Eng. Gas Turbines Power 143, 051006 (2021)

    Article  Google Scholar 

  268. Temam, R.: Induced trajectories and approximate inertial manifolds. Math. Model. Numer. Anal. 235(3), 541–561 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  269. Thomas, O., Bilbao, S.: Geometrically nonlinear flexural vibrations of plates: in-plane boundary conditions and some symmetry properties. J. Sound Vib. 315(3), 569–590 (2008)

    Article  Google Scholar 

  270. Thomas, O., Mathieu, F., Mansfield, W., Huang, C., Trolier-McKinstry, S., Nicu, L.: Efficient parametric amplification in MEMS with integrated piezoelectric actuation and sensing capabilities. Appl. Phys. Lett. 102(16), 163504 (2013)

    Article  Google Scholar 

  271. Thomas, O., Sénéchal, A., Deü, J.F.: Hardening/softening behaviour and reduced order modelling of nonlinear vibrations of rotating cantilever beams. Nonlinear Dyn. 86(2), 1293–1318 (2016)

    Article  Google Scholar 

  272. Thomas, O., Touzé, C., Chaigne, A.: Asymmetric non-linear forced vibrations of free-edge circular plates, part 2: experiments. J. Sound Vib. 265(5), 1075–1101 (2003)

    Article  Google Scholar 

  273. Thomas, O., Touzé, C., Chaigne, A.: Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance. Int. J. Solids Struct. 42(11–12), 3339–3373 (2005)

    Article  MATH  Google Scholar 

  274. Thomas, O., Touzé, C., Luminais, E.: Non-linear vibrations of free-edge thin spherical shells: experiments on a 1:1:2 internal resonance. Nonlinear Dyn. 49(1–2), 259–284 (2007)

    Article  MATH  Google Scholar 

  275. Thorin, A., Delezoide, P., Legrand, M.: Non-smooth modal analysis of piecewise-linear impact oscillators. SIAM J. Appl. Dyn. Syst. 16(3), 1710–1747 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  276. Thorin, A., Legrand, M.: Nonsmooth modal analysis: from the discrete to the continuous settings. In: Leine, R., Acary, V., Brüls, O. (eds.) Advanced Topics in Nonsmooth Dynamics. Transactions of the European Network for Nonsmooth Dynamics (2018)

  277. Tiso, P., Jansen, E., Abdalla, M.: Reduction method for finite element nonlinear dynamic analyses of shells. AIAA J. 49(10), 2295–2304 (2011)

    Article  Google Scholar 

  278. Titi, E.S.: On approximate inertial manifolds to the Navier–Stokes equations. J. Math. Anal. Appl. 149(2), 540–557 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  279. Touzé, C.: A normal form approach for non-linear normal modes. Tech. rep., Publications du LMA, numéro 156, (ISSN: 1159-0947, ISBN: 2-909669-20-3) (2003)

  280. Touzé, C.: Normal form theory and nonlinear normal modes: theoretical settings and applications. In: Kerschen, G. (ed.) Modal Analysis of Nonlinear Mechanical Systems. Springer Series CISM Courses and Lectures, vol. 555, pp. 75–160. Springer, New York (2014)

    Google Scholar 

  281. Touzé, C., Amabili, M.: Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures. J. Sound Vib. 298(4–5), 958–981 (2006)

    Article  Google Scholar 

  282. Touzé, C., Amabili, M., Thomas, O.: Reduced-order models for large-amplitude vibrations of shells including in-plane inertia. Comput. Methods Appl. Mech. Eng. 197(21–24), 2030–2045 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  283. Touzé, C., Bilbao, S., Cadot, O.: Transition scenario to turbulence in thin vibrating plates. J. Sound Vib. 331(2), 412–433 (2012)

    Article  Google Scholar 

  284. Touzé, C., Camier, C., Favraud, G., Thomas, O.: Effect of imperfections and damping on the type of nonlinearity of circular plates and shallow spherical shells. Math. Probl. Eng. 2008, ID 678307 (2008)

  285. Touzé, C., Thomas, O.: Non-linear behaviour of free-edge shallow spherical shells: effect of the geometry. Int. J. Non-Linear Mech. 41(5), 678–692 (2006)

    Article  MATH  Google Scholar 

  286. Touzé, C., Thomas, O., Amabili, M.: Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates. Int. J. Non-Linear Mech. 46(1), 234–246 (2011)

    Article  Google Scholar 

  287. Touzé, C., Thomas, O., Chaigne, A.: Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. J. Sound Vib. 273(1–2), 77–101 (2004)

    Article  Google Scholar 

  288. Touzé, C., Thomas, O., Huberdeau, A.: Asymptotic non-linear normal modes for large-amplitude vibrations of continuous structures. Comput. Struct. 82(31), 2671–2682 (2004)

    Article  Google Scholar 

  289. Touzé, C., Vidrascu, M., Chapelle, D.: Direct finite element computation of non-linear modal coupling coefficients for reduced-order shell models. Comput. Mech. 54(2), 567–580 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  290. Vakakis, A.F.: Non-linear normal modes (NNMs) and their application in vibration theory: an overview. Mech. Syst. Signal Process. 11(1), 3–22 (1997)

    Article  Google Scholar 

  291. Vakakis, A.F., Cetinkaya, C.: Mode localization in a class of multidegree-of-freedom nonlinear systems with cyclic symmetry. SIAM J. Appl. Math. 53(1), 265–282 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  292. Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Philipchuck, V.N., Zevin, A.A.: Normal Modes and Localization in Non-linear Systems. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  293. Varona, M.C., Gebhart, R., Bilfinger, P., Lohmann, B., Rixen, D.J.: A novel derivation for modal derivatives based on Volterra series representation and its use in nonlinear model order reduction. In: Proceedings of 7 th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, June 24–26. Crete, Greece (2019)

  294. Veraszto, Z., Ponsioen, S., Haller, G.: Explicit third-order model reduction formulas for general nonlinear mechanical systems. J. Sound Vib. 468, 115039 (2020)

    Article  Google Scholar 

  295. Vizzaccaro, A., Givois, A., Longobardi, P., Shen, Y., Deü, J.F., Salles, L., Touzé, C., Thomas, O.: Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements. Comput. Mech. 66, 1293–1319 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  296. Vizzaccaro, A., Salles, L., Touzé, C.: Comparison of nonlinear mappings for reduced-order modeling of vibrating structures: normal form theory and quadratic manifold method with modal derivatives. Nonlinear Dyn. 103, 3335–3370 (2021)

    Article  Google Scholar 

  297. Vizzaccaro, A., Shen, Y., Salles, L., Blahos, J., Touzé, C.: Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures. Comput. Methods Appl. Mech. Eng. (2020) (submitted)

  298. von Kármán, T.: Festigkeitsprobleme im maschinenbau. Encyklop adie der Mathematischen Wissenschaften 4(4), 311–385 (1910)

    MATH  Google Scholar 

  299. von Wagner, U.: Piezoceramics—nonlinear behavior at moderate strains. In: Proceedings of the 11th Conference on Dynamical Systems Theory and Applications. Łódź, Poland (2011)

  300. Wang, X.Q., Mignolet, M.: Discussion on “A non-intrusive model-order reduction of geometrically nonlinear structural dynamics using modal derivatives”. Mech. Syst. Signal Process. 159, 107638 (2021)

    Article  Google Scholar 

  301. Wang, X.Q., O’Hara, P.J., Mignolet, M.P., Hollkamp, J.J.: Reduced order modeling with local enrichment for the nonlinear geometric response of a cracked panel. AIAA J. 57(1), 421–436 (2019)

    Article  Google Scholar 

  302. Wang, X.Q., Phlipot, G.P., Perez, R.A., Mignolet, M.P.: Locally enhanced reduced order modeling for the nonlinear geometric response of structures with defects. Int. J. Non-Linear Mech. 101, 1–7 (2018)

    Article  Google Scholar 

  303. Wang, Y., Palacios, R., Wynn, A.: A method for normal-mode-based model reduction in nonlinear dynamics of slender structures. Comput. Struct. 159, 26–40 (2015)

    Article  Google Scholar 

  304. Wang, Y., Wang, X.Q., Mignolet, M.P.: Component-centric reduced order modeling for the prediction of the nonlinear geometric response of a part of a stiffened structure. J. Comput. Nonlinear Dyn. 13(12), 121006 (2018)

    Article  Google Scholar 

  305. Waswa, P.M.B., Redkar, S.: A direct approach for simplifying nonlinear systems with external periodic excitation using normal forms. Nonlinear Dyn. 99, 1065–1088 (2020)

    Article  MATH  Google Scholar 

  306. Weeger, O., Wever, U., Simeon, B.: Nonlinear frequency response analysis of structural vibrations. Comput. Mech. 54(6), 1477–1495 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  307. Weeger, O., Wever, U., Simeon, B.: On the use of modal derivatives for nonlinear model order reduction. Int. J. Numer. Methods Eng. 108(13), 1579–1602 (2016)

    Article  MathSciNet  Google Scholar 

  308. Wei, S.T., Pierre, C.: Localization phenomena in mistuned assemblies with cyclic symmetry part I: free vibrations. J. Vib. Acoust. Stress Reliab. Des. 110(4), 429–438 (1988)

    Article  Google Scholar 

  309. Wei, S.T., Pierre, C.: Localization phenomena in mistuned assemblies with cyclic symmetry part II: forced vibrations. J. Vib. Acoust. Stress Reliab. Des. 110(4), 439–449 (1988)

    Article  Google Scholar 

  310. Weinstein, A.: Normal modes for nonlinear Hamiltonian systems. Inventiones mathematicae 20, 47–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  311. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  312. Woinowsky-Krieger, S.: The effect of axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  313. Wooden, S.M., Sinha, S.: Analysis of periodic-quasiperiodic nonlinear systems via Lyapunov–Floquet transformation and normal forms. Nonlinear Dyn. 47, 687–702 (2007)

  314. Wu, L., Tiso, P.: Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach. Multibody Syst. Dyn. 36, 405–425 (2016)

  315. Wu, L., Tiso, P., Tatsis, K., Chatzi, E., van Keulen, F.: A modal derivatives enhanced Rubin substructuring method for geometrically nonlinear multibody systems. Multibody Syst. Dyn. 45, 57–85 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  316. Wunderlin, A., Haken, H.: Generalized Ginzburg-Landau equations, slaving principle and center manifold theorem. Zeitschrift für Physik B Condensed Matter 44, 135–141 (1981)

    Article  MathSciNet  Google Scholar 

  317. Yokoyama, N., Takaoka, M.: Weak and strong wave turbulence spectra for elastic thin plate. Phys. Rev. Lett. 110(10), 105501 (2013)

    Article  Google Scholar 

  318. Yoong, C., Thorin, A., Legrand, M.: Nonsmooth modal analysis of an elastic bar subject to a unilateral contact constraint. Nonlinear Dyn. 91(4), 2453–2476 (2018)

    Article  Google Scholar 

  319. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, New York (2011)

    Book  Google Scholar 

  320. Yu, P., Zhang, W., Bi, Q.: Vibration analysis on a thin plate with the aid of computation of normal forms. Int. J. Non-Linear Mech. 36(4), 597–627 (2001)

    Article  MATH  Google Scholar 

  321. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence 1: Wave Turbulence. Series in Nonlinear Dynamics. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  322. Zega, V., Gattere, G., Koppaka, S., Alter, A., Vukasin, G.D., Frangi, A., Kenny, T.W.: Numerical modelling of non-linearities in mems resonators. J. Microelectromech. Syst. 29(6), 1443–1454 (2020)

    Article  Google Scholar 

  323. Zhang, W., Huseyin, K., Ye, M.: On the computation of the coefficients associated with high order normal forms. J. Sound Vib. 232(3), 525–540 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are especially thankful to Alex Haro for detailed discussions we had in January 2021. Walter Lacarbonara is also warmly thanked for inviting the first author to write a review paper on reduction methods. Andrea Opreni and Attilio Frangi are thanked for their major contributions to the developments of efficient writing and coding of the DNF for FE systems and the interesting applications to MEMS as well as first-draft readings. Loïc Salles is thanked for all the discussions and collaborations on the subject and for launching the subject again in January 2019. Yichang Shen is thanked for his involvement in the project. Steve Shaw and David Wagg read first versions of the paper and brought out numerous interesting comments to the authors that helped improving the presentation, they are sincerely thanked for this precious help. Claude Lamarque, Gérard Iooss and Paul Manneville are thanked for the non-countable discussions we had on normal forms in the last years.

Funding

The work received no additional funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Touzé.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Symmetry of the quadratic and cubic tensors

This appendix is devoted to the demonstration of the symmetry properties of the nonlinear tensors of coefficients \({\mathbf {G}}\), \({\mathbf {H}}\), \({\mathbf {g}}\) and \({\mathbf {h}}\), that appear in the equations of motion written in terms of FE coordinates, Eq. 6), or with modal coordinates, Eq. (11).

The FE coordinates are first considered. Let us denote by \({\mathbf {k}}({\mathbf {X}})={\mathbf {K}}{\mathbf {X}}+{\mathbf {f}}_\text {nl}({\mathbf {X}})\) the internal force vector. Using indicial notations and Einstein summation convention, it can be written explicitly, for \(i,j,l,s=1,\ldots N\):

$$\begin{aligned} k_s=K_{si}X_i+G^s_{ij}X_iX_j+H^s_{ijl}X_iX_jX_l, \end{aligned}$$
(51)

where \(k_s\) is the s-th component of the internal force vector \({\mathbf {k}}\), \(K_{si}\) are the components of the stiffness matrix \({\mathbf {K}}\); while \(G^s_{ij}\), \(H^s_{ijl}\) are the quadratic and cubic coefficients defined in Eq. (8). In a 3D finite element context, the physical displacement vector \({\mathbf {u}}({\mathbf {y}})\) is interpolated on a family of shape functions \({\mathbf {N}}_i\), such that \(u_\alpha ({\mathbf {y}})=N_{\alpha i}({\mathbf {y}})X_i(t)\), \(\alpha =1,2,3\). Using Voigt notations, the Green–Lagrange strain tensor, Eq. (5), and its variation can be written, for \(\alpha =1,\ldots 6\) (see [67]):

$$\begin{aligned}&E_\alpha =B^{(1)}_{\alpha i}X_i+\frac{1}{2}B^{(2)}_{\alpha ij}X_iX_j,\quad \nonumber \\&\delta E_\alpha =B^{(1)}_{\alpha i}({\mathbf {y}})\delta X_i+B^{(2)}_{\alpha ij}X_i\delta X_j, \end{aligned}$$
(52)

with \(B^{\alpha (1)}_{i}\) of size \(6\times N\) and \(B^{\alpha (2)}_{ij}\) of size \(6\times N\times N\) are two discretised gradients operators, defined by:

$$\begin{aligned}&B^{(1)}_{\alpha i}=\begin{bmatrix} N_{1i,1} \\ N_{2i,2} \\ N_{3i,3} \\ N_{2i,3}+N_{3i,2} \\ N_{1i,3}+N_{3i,1} \\ N_{1i,2}+N_{2i,1} \end{bmatrix}\nonumber \\&\quad B^{(2)}_{\alpha ij}=\begin{bmatrix} N_{li,1 }N_{lj,1}\\ N_{li,2 }N_{lj,2}\\ N_{li,3 }N_{lj,3}\\ N_{li,2 }N_{lj,3}+N_{li,3 }N_{lj,2}\\ N_{li,3 }N_{lj,1}+N_{li,1 }N_{lj,3}\\ N_{li,2 }N_{lj,1}+N_{li,1 }N_{lj,2} \end{bmatrix} \end{aligned}$$
(53)

where each row of the matrices corresponds to the corresponding value of index \(\alpha =1,\ldots 6\) and \(N_{\alpha i,\beta }=\partial N_{\alpha i}/\partial y_\beta \) is a space derivative of the shape functions.

Then, the virtual work of the internal forces can be written:

$$\begin{aligned} \delta {\mathcal {W}}_\text {int}&=\int _\varOmega C_{\alpha \beta }E_\alpha \delta E_\beta \,{{\text {d}}}\varOmega = k_s\delta X_s \end{aligned}$$
(54)
$$\begin{aligned}&=\Bigg [\underbrace{\int _\varOmega C_{\alpha \beta }B_{\alpha i}^{(1)}B_{\beta s}^{(1)}\,{{\text {d}}}\varOmega }_{K_{si}} \,X_i \nonumber \\&\quad + \underbrace{\int _\varOmega C_{\alpha \beta }\left( B_{\alpha i}^{(1)}B_{\beta js}^{(2)} +\frac{1}{2}B_{\alpha s}^{(1)}B_{\beta ij}^{(2)}\right) \,{{\text {d}}}\varOmega }_{G^s_{ij}} \,X_i X_j \nonumber \\&\quad + \underbrace{\int _\varOmega \frac{1}{2}C_{\alpha \beta }B_{\alpha ij}^{(2)}B_{\beta ls}^{(2)}\,{{\text {d}}}\varOmega }_{H^s_{ijl}} \,X_i X_jX_l \Bigg ]\delta X_s\nonumber \\ \end{aligned}$$
(55)

where \(C_{\alpha \beta }\) is the elasticity tensor in Voigt notations. The above equation defines the tensor components \(K_{si}\), \(G^s_{ij}\) and \(H^s_{ijl}\) of the internal forces.

The elasticity tensor is symmetric (\(C_{\alpha \beta }=C_{\beta \alpha }\)) and Eq. (53) shows that \(B^{(2)}_{\alpha ij}=B^{(2)}_{\alpha ji}\): on can invert the two latin subscripts. This leads to a symmetric stiffness matrix and allows any change of the order of the indices for the cubic coefficients (\(4!=24\) possibilities if \(i\ne j\ne l\ne s\)):

$$\begin{aligned} H^s_{ijl} = H^l_{sij} = H^j_{lsi} = H^i_{jls} = H^s_{jil}=\ldots \end{aligned}$$
(56)

For the quadratic coefficients, no symmetry appears. However, the coefficients \(G^s_{ij}\) and \(G^s_{ji}\) refer to the same monomial \(X_iX_j\) in Eq. (51). Due to the commutativity property of the usual product, one then understands that only the summation of these two quadratic coefficient \(G^s_{ij}\) and \(G^s_{ji}\) matters. This leads several authors (see, e.g. [69, 190, 287]) to adopt a so-called upper triangular form for those tensors for which Eq. (51) is rewritten as

$$\begin{aligned} k_s= & {} \sum _{i=1}^N K_{si}X_i + \sum _{i=1}^N \sum _{j=i}^N {\hat{G}}^s_{ij} X_i X_j \nonumber \\&+ \sum _{i=1}^N \sum _{j=i}^N \sum _{l=j}^N {\hat{H}}^s_{ijl} X_i X_j X_l. \end{aligned}$$
(57)

With this selection, an unequivocal representation of the monomials is given, and the coefficients are attributed such that only those with increasing indices (\(l\ge j \ge i\)) are nonzero, while the other ones (\(l\le j \le i\)) are set to zero. For the quadratic coefficients, this leads to, for all s:

$$\begin{aligned} {\hat{G}}^s_{ii}= & {} G^s_{ii}, \quad \forall i, \end{aligned}$$
(58)
$$\begin{aligned} {\hat{G}}^s_{ij}= & {} G^s_{ij}+G^s_{ji}=\int _\varOmega C_{\alpha \beta }\left( B_{\alpha i}^{(1)}B_{\beta js}^{(2)}\right. \nonumber \\&\left. +B_{\alpha j}^{(1)}B_{\beta is}^{(2)}+B_{\alpha s}^{(1)}B_{\beta ij}^{(2)}\right) \,{{\text {d}}}\varOmega ,\quad \forall j>i, \end{aligned}$$
(59)
$$\begin{aligned} {\hat{G}}^s_{ji}= & {} 0,\quad \forall j>i. \end{aligned}$$
(60)

In the above Eq. (59), any change of the order of the indices sij is allowed, which leads to the following properties:

$$\begin{aligned} {\hat{G}}^i_{ij}= & {} 2{\hat{G}}^j_{ii},\quad {\hat{G}}^j_{ij}=2{\hat{G}}^i_{jj},\quad {\hat{G}}^l_{ij}={\hat{G}}^j_{il},\nonumber \\ {\hat{G}}^l_{ij}= & {} {\hat{G}}^i_{lj},\quad \forall i<j<l \end{aligned}$$
(61)

Analog expressions are obtained for the cubic coefficients \({\hat{H}}^s_{ijl}\) (see [69, 190]).

In the present article, we found convenient to use the standard form (51) instead of the upper triangular form (57) for all our demonstrations and we enforced the symmetry on the quadratic coefficients by redefining them as the symmetric part of their upper triangular counterparts: \(G^s_{ij}=G^s_{ji}={\hat{G}}^s_{ij}/2\), \(\forall j\ne i\). This leads to allows any change of the order of the indices also for the quadratic coefficients:

$$\begin{aligned} G^s_{ij}=G^s_{ji}=G^i_{js}=G^i_{sj}=G^j_{is}=G^j_{si}. \end{aligned}$$
(62)

All the above reasoning equally applies to the modal coefficients \(g^s_{ij}\) and \(h^s_{ijl}\) of Eq. (11), since, according to Eq. (12a), (12b), rewritten in full indicial form with Einstein notation, one has:

$$\begin{aligned}&g^p_{mn}=G^s_{ij}\phi _{sp}\phi _{im}\phi _{jn},\quad h^p_{mnq}=H^s_{ijl}\phi _{sp}\phi _{im}\phi _{jn}\phi _{lq},\nonumber \\&\qquad \forall p,m,n,q=1,\ldots N, \end{aligned}$$
(63)

where \(\phi _{jn}\) refers to the j-th component of the n-th eigenvector. Consequently, the same symmetry as in Eqs. (62) and (56) applies for the modal coefficients:

$$\begin{aligned}&g^s_{ij}=g^s_{ji}=g^i_{js}=g^i_{sj}=g^j_{is}=g^j_{si}, \end{aligned}$$
(64)
$$\begin{aligned}&h^s_{ijl} = h^l_{sij} = h^j_{lsi} = h^i_{jls} = h^s_{jil}=\ldots \end{aligned}$$
(65)

Again, any permutation of the indices s, i, j, l is possible.

All the above symmetries are also a consequence of the existence of a potential energy [69, 190]:

$$\begin{aligned} {\mathcal {V}}=\frac{1}{2}\int _\varOmega C_{\alpha \beta }E_\alpha ({\mathbf {X}}) E_\beta ({\mathbf {X}})\,{{\text {d}}}\varOmega , \end{aligned}$$
(66)

which is a quartic polynomial in \({\mathbf {X}}\). Then, the i-th component of the internal force vector can be directly derived from the elastic energy as:

$$\begin{aligned} k_i({\mathbf {X}})= \dfrac{\partial {\mathcal {V}}}{\partial X_i}. \end{aligned}$$
(67)

Using Schwarz’s theorem, one can write:

$$\begin{aligned} \dfrac{\partial ^2 {\mathcal {V}}}{\partial x_i\partial x_j} = \dfrac{\partial ^2 {\mathcal {V}}}{\partial x_j\partial x_i}\quad \Rightarrow \quad \dfrac{\partial k_i}{\partial x_j} = \dfrac{\partial k_j}{\partial x_i}. \end{aligned}$$
(68)

Then, identifying the coefficients of identical monomials in the above last equations with the upper triangular form for \(k_i\) leads to prove all the symmetry properties of Eq. (61) and their analogs for the cubic coefficients.

Classification of nonlinear terms

This section is devoted to give more details of the terminology used throughout the text to classify the different nonlinear coupling terms and monomials appearing in the dynamics. It is based on previous developments reported, e.g. in [280, 287], and all the textbooks dealing with normal form theory, where the reader can find more details. Systems with geometric nonlinearity are essentially driven by a large assembly of nonlinearly coupled oscillators, thus generating a very large number of coupling terms (of the order of \(N^4\) terms). However, all the terms does not play the same role and it is important to identify the contributions of each monomials. For this discussion on the terminology, we use the equations of motion written in modal space, Eq. (11), and more specifically, \(\forall \; p \, \in \, [1,\ldots ,N]\):

$$\begin{aligned}&\ddot{x}_p + \omega _p^2 x_p + \sum _{i=1}^{N} \sum _{j \ge i }^{N} g_{ij}^p x_i x_j \nonumber \\&\quad + \sum _{i=1}^{N} \sum _{j\ge i}^{N} \sum _{k \ge j}^{N} h_{ijk}^p x_ix_jx_k = 0. \end{aligned}$$
(69)

For the discussion herein, assume that m is the master mode such that most of the energy is contained within \(x_m\). Invariant-breaking terms have already been commented in the main text, they are the monomials on p-th oscillator equation with the form \(g^p_{mm} x_m^2\) and \(h^p_{mmm} x_m^3\). As soon as \(x_m \ne 0\), then all \(x_p\) where this terms exist will also be excited and will thus have a nonzero amplitude. These terms break the invariance of the linear eigensubspaces and can be directly tracked in the equations defining the geometry of the invariant manifolds, as underlined in Sects. 3.2 and 3.3.

In order to go ahead in this classification, the link with internal resonance must be properly understood. Let us start by underlining that any nonlinear term can be interpreted as a forcing term for the corresponding oscillator equation. Continuing with the same example, the term \(g^p_{mm} x_m^2\) is a forcing term on oscillator p. Interestingly, at the lowest order of approximation, \(x_m \sim {{\,\mathrm{e}\,}}^{\pm i \omega _m t}\), such that \(x_m^2\) will create a forcing with frequency components \(2\omega _m\) and 0. From this, we can conclude that for oscillator p, if \(\omega _p \simeq 2\omega _m\) then the forcing term \(g^p_{mm} x_m^2\) will be a resonant forcing term, exciting component p in the vicinity of its eigenfrequency thus creating large amplitude response. One then call the monomial \(g^p_{mm} x_m^2\) a resonant monomial. On the other hand, as long as \(\omega _p \ne 2\omega _m\), then the forcing term is non-resonant, and the corresponding monomial is non-resonant.

This simple example generalizes thanks to normal form theory. The resonance relationship are then linked with internal resonance between the eigenfrequencies of the system, all of them being connected to a specific order of nonlinearity, conducting to so-called second-order internal resonance and third-order internal resonance. Due to the fact that for linear conservative system, the eigenspectrum is purely imaginary \(\{ \pm i \omega _r \}\), some third-order relationships are always fulfilled, all those of the form:

$$\begin{aligned} \forall {r,p}=[1,\ldots ,N]: \quad +i\omega _r = +i\omega _p -i \omega _p + i\omega _r.\nonumber \\ \end{aligned}$$
(70)

These resonances are called trivial resonance and their associated monomials are called trivially resonant monomials. The main consequence in terms of normal form is that all these monomials cannot be cancelled from the normal form of the system. The normal form is not linear but stay nonlinear with only these trivially resonant monomials in case of no other internal resonances between the eigenfrequencies, following the general results from Poincaré and Poincaré-Dulac’s theorems.

From these developments, we can derive the following classification:

  • trivially resonant monomials: for the m-th oscillator, all the terms \(x_m^3\), \(x_m x_p^2\), \(\forall p=1,\ldots N\), are trivially resonant monomials, corresponding to the trivial resonance relationships (70). They cannot be cancelled from the normal form and stay in the resulting equations as ascertained in Eq. (29). Note in particular than none of these are invariant-breaking, recovering the fact that the dynamics is well expressed in an invariant-based span of the phase space for Eq. (29), which is not the case for the equations of motion in modal space, Eq. (69).

  • resonant monomial: a resonant monomial is the nonlinear term connected to an internal resonance between the eigenfrequencies of the system. For any internal resonance, a few monomials exist which can be tracked from the simple interpretation of nonlinear term as forcing.

  • non-resonant monomial: a nonlinear term that is not connected to an internal resonance.

When an internal resonance exist, the corresponding resonant monomials create what is generally called a strong, resonant coupling, and they convey the energy exchange between the coupled oscillators, leading to more complex form of the dynamics with bifurcation in a larger phase space. Otherwise, the coupling is termed weak or non-resonant.

Parametrisation of invariant manifold

In this appendix, more details on the parametrisation method for the computation of invariant manifold of vector fields in the vicinity of a fixed point, are given. The presentation follows strictly the one given by Haro et al., using their notations and developments, so that all the credit of the presentation reported here is given to [83]. Here, a simple summary (with slight simplifications in the presentation) is provided and the interested reader is referred to [83] for more details.

The unknowns \({\mathbf {W}}\) and \({\mathbf {f}}\) are searched as polynomial expansions of order k. They are computed order by order, under the form

$$\begin{aligned} {\mathbf {W}}({\mathbf {s}})&= {\mathbf {z}}_{\star } + {\mathbf {L}}{\mathbf {s}}+ \sum _{k \ge 2} {\mathbf {W}}_k ({\mathbf {s}}), \end{aligned}$$
(71a)
$$\begin{aligned} {\mathbf {f}}({\mathbf {s}})&= \varvec{\varLambda }_L {\mathbf {s}}+ \sum _{k \ge 2} {\mathbf {f}}_k ({\mathbf {s}}), \end{aligned}$$
(71b)

where \({\mathbf {L}}\) is the restriction of the matrix of eigenvectors to the master modes of interest, and \(\varvec{\varLambda }_L\) the linear diagonalized part of the dynamics restricted to the master modes contained in \({\mathbf {L}}\). \({\mathbf {W}}_k ({\mathbf {s}})\) represents an n-dimensional vector of d-variate homogeneous polynomials of degree k, starting at second order (quadratic terms), while \({\mathbf {f}}_k\) is n-dimensional.

By replacing (71) into the invariance Eq. (17) and identifying terms with the same power k, on obtains the so-called order-k homological equation as

$$\begin{aligned} {{\text {D}}}{\mathbf {F}}(z_{\star }) {\mathbf {W}}_k ({\mathbf {s}}) - {\mathbf {L}}{\mathbf {f}}_k ({\mathbf {s}}) - {{\text {D}}}{\mathbf {W}}_k ({\mathbf {s}}) \varvec{\varLambda }_L {\mathbf {s}}= -{\mathbf {E}}_k ({\mathbf {s}}),\nonumber \\ \end{aligned}$$
(72)

where the order-k error term \({\mathbf {E}}_k ({\mathbf {s}})\) has been introduced as:

$$\begin{aligned} {\mathbf {E}}_k ({\mathbf {s}}) = \left[ {\mathbf {F}}({\mathbf {W}}_{<k} ({\mathbf {s}})) \right] _k - \left[ {{\text {D}}}{\mathbf {W}}_{<k} ({\mathbf {s}}) {\mathbf {f}}_{<k} ({\mathbf {s}}) \right] _k, \end{aligned}$$
(73)

and where the shortcut notation \(\left[ \; .\; \right] _k\) refers to the selection of k-th order terms only, while \({\mathbf {W}}_{<k}\) refers to all orders strictly smaller than k.

More insight can be given by projecting onto the modal coordinates, then allowing separating contributions due to master and slave coordinates. Denoting as \({\mathbf {P}}\) the vector of eigenfunctions, one can introduce:

$$\begin{aligned} \varvec{\xi }_k ({\mathbf {s}}) = {\mathbf {P}}^{-1} {\mathbf {W}}_k ({\mathbf {s}}), \end{aligned}$$
(74)

the coefficients of the nonlinear mapping expressed in the modal basis, as well as

$$\begin{aligned} \varvec{\eta }_k ({\mathbf {s}}) = {\mathbf {P}}^{-1} {\mathbf {E}}_k ({\mathbf {s}}), \end{aligned}$$
(75)

the expression of the error-k vector in the modal basis.

The vector \(\varvec{\xi }_k\) can be split as follows:

$$\begin{aligned} \varvec{\xi }_k ({\mathbf {s}}) = \left[ \begin{array}{c} \varvec{\xi }_k^L ({\mathbf {s}}) \\ \varvec{\xi }_k^N ({\mathbf {s}}) \end{array} \right] , \end{aligned}$$
(76)

where the first d lines \(\varvec{\xi }_k^L\) is the tangent part, related to the original linear matrix \({\mathbf {L}}\) containing the master mode coordinates, and the last \(n-d\) lines, \(\varvec{\xi }_k^N\), refers to the normal part (slave coordinates). The normal part of Eq. (72) is now called the normal co-homological equation and reads

$$\begin{aligned} \varvec{\varLambda }_N \varvec{\xi }_k^N ({\mathbf {s}}) - D \varvec{\xi }_k^N ({\mathbf {s}}) \varvec{\varLambda }_L {\mathbf {s}}= \varvec{\eta }_k^N ({\mathbf {s}}), \end{aligned}$$
(77)

where the second member vector \(\varvec{\eta }\) has been split following the same notation. One must first solve this equation as only depending on one unknown \(\varvec{\xi }_k^N\). The remaining part is called the tangent co-homological equation and reads

$$\begin{aligned} \varvec{\varLambda }_L \varvec{\xi }_k^L ({\mathbf {s}}) - D \varvec{\xi }_k^L ({\mathbf {s}}) \varvec{\varLambda }_L {\mathbf {s}}- {\mathbf {f}}_k ({\mathbf {s}}) = \varvec{\eta }_k^L ({\mathbf {s}}), \end{aligned}$$
(78)

In order to fully analyze the co-homological equations and express their solutions, let us first denote as \(\varvec{\xi }_k ({\mathbf {s}}) = [\xi _k^1 ({\mathbf {s}}), \ldots , \xi _k^n ({\mathbf {s}})]^t\) the n components of the vector \(\varvec{\xi }_k ({\mathbf {s}})\), which all are homogeneous polynomial of degree k. The same notation is used for the second vector of unknowns, \({\mathbf {f}}_k ({\mathbf {s}}) = [f_k^1 ({\mathbf {s}}), \ldots , f_k^d ({\mathbf {s}})]^t\), which is d-dimensional and also composed of homogeneous polynomial of degree k. The known vector \(\varvec{\eta }_k ({\mathbf {s}}) = [\eta _k^1 ({\mathbf {s}}), \ldots , \eta _k^n ({\mathbf {s}})]^t\) is developed as well following the same indicial notation. The normal part of the cohomological Eq. (77) can now simply be rewritten component by component, for \(i=d+1, \ldots , n\):

$$\begin{aligned} \lambda _i \xi _k^i ({\mathbf {s}}) - D\xi _k^i ({\mathbf {s}}) \varvec{\varLambda }_L {\mathbf {s}}= \eta _k^i ({\mathbf {s}}). \end{aligned}$$
(79)

Let us denote as \(\xi _{{\mathbf {m}}}^i\) the coefficient of the monomial term associated with the i-th line, \(i=d+1, \ldots , n\), and to the vector of integers \({\mathbf {m}}\) such that \({\mathbf {m}}= [m_1, \ldots , m_d]^t\), where all \(m_j\) are integers and \(|{\mathbf {m}}| = m_1 + m_2 + \cdots + m_d = k\) is the order k of the polynomials considered. Saying things differently, \(\xi _{{\mathbf {m}}}^i\) is the coefficient of the monomial term \(s_1^{m_1}s_2^{m_2}\ldots s_d^{m_d}\), of order k, and each \(\varvec{\xi }_k^i ({\mathbf {s}})\) is composed of the summations of all possible combinations of these order-k monomial terms. Since Eq. (77) is diagonal with respect to \(\xi _{{\mathbf {m}}}^i\), one can write, for \(i=d+1, \ldots , n\) and for \(|{\mathbf {m}}|=k\):

$$\begin{aligned} \left( \lambda _i - {\mathbf {m}}\varvec{\lambda }_L \right) \xi _{{\mathbf {m}}}^i = \eta _{{\mathbf {m}}}^i, \end{aligned}$$
(80)

with the shortcut notation \({\mathbf {m}}\varvec{\lambda }_L = m_1 \lambda _1 + \cdots + m_d \lambda _d\).

A cross-resonance occurs if there exist pairs \(({\mathbf {m}},i)\) such that \(\lambda _i = {\mathbf {m}}\varvec{\lambda }_L\). If the system has no cross-resonance, then an explicit solution for the unknown coefficient \(\xi _{{\mathbf {m}}}^i\) is found as

$$\begin{aligned} \xi _{{\mathbf {m}}}^i = \frac{\eta _{{\mathbf {m}}}^i}{\lambda _i - {\mathbf {m}}\varvec{\lambda }_L}. \end{aligned}$$
(81)

If a cross-resonance exist, then a strong coupling exist between one slave coordinate and the set of master coordinates, and there is an obstruction in solving the normal cohomological equation. This means that a strong nonlinear coupling exist between one master and one slave coordinate such that the initial choice is not good, and the remedy consists in enlarging the number of master coordinates by considering the slave resonant modes as masters.

Following the same notations, for the tangent co-homological equation, one arrives at, for all \(i=1, \ldots , d\):

$$\begin{aligned} \lambda _i \xi _k^i ({\mathbf {s}}) - D\xi _k^i ({\mathbf {s}}) \varvec{\varLambda }_L {\mathbf {s}}- f_k^i ({\mathbf {s}})= {\tilde{\eta }}_k^i ({\mathbf {s}}), \end{aligned}$$
(82)

with the shortcut notation \({\tilde{\varvec{\eta }}}_k^L ({\mathbf {s}}) = \varvec{\eta }_k^L ({\mathbf {s}})\). Again, this last equation can be explicited in terms of the unknowns which are each of the coefficients of the monomial terms. Using the same notation, one arrives at the following, for all \(i=1, \ldots , d\)

$$\begin{aligned} \left( \lambda _i - {\mathbf {m}}\varvec{\lambda }_L \right) \xi _{{\mathbf {m}}}^i - f_{{\mathbf {m}}}^i= {\tilde{\eta }}_{{\mathbf {m}}}^i. \end{aligned}$$
(83)

The pairs \(({\mathbf {m}},i) \in {\mathbb {N}}^d \times {1,\ldots ,d}\), with \(|{\mathbf {m}}| \ge 2\) such that \(\lambda _i = {\mathbf {m}}\varvec{\lambda }_L \) create an internal resonance, referring to a nonlinear resonance relationship between the eigenvalues of the master coordinates. When such an internal resonance exist, then there is an obstruction to the linearisation of the reduced dynamics.

Since in (83) two unknowns are present, namely the coefficient of the monomials of both the nonlinear change of coordinate \(\xi _{{\mathbf {m}}}^i\) and the reduced dynamics \(f_{{\mathbf {m}}}^i\), the solution to this equation is not unique and can also be given even if there exist some resonances. This explains why there exist many different ways of solving the problem, thus leading to the different styles of parametrisation. The two main style of solutions are given as the graph style and the normal form style.

The graph style is simply obtained by stating that from order \(k=2\), all the corrections contained in the master coordinates \(\varvec{\xi }_k^L ({\mathbf {s}})\), are vanishing: \(\varvec{\xi }_k^L ({\mathbf {s}})=0\). This means that the master coordinates are only linearly related to the original ones. With this assumption, one can then replace in Eq. (83) to arrive at the terms allowing one to write the reduced dynamics as, for \(i=1,\ldots d\), \(|m|=k\):

$$\begin{aligned} f_{{\mathbf {m}}}^i= -{\tilde{\eta }}_{{\mathbf {m}}}^i, \quad \xi _{{\mathbf {m}}}^i = 0. \end{aligned}$$
(84)

With this choice, one recovers the classical technique promoted from centre manifold theorem giving as initial guess a functional relationship (graph) between slave and master coordinates.

In the normal form style, the idea is to simplify as much as possible the reduced-order dynamics, by keeping only the resonant monomials, and discarding all other non-essential terms for the dynamical analysis. This leads to a more complex calculation, and a full nonlinear mapping between original coordinates and reduced ones, and at the end one arrives at a normal form for the reduced vector fields \({\mathbf {f}}\). The drawback is that calculations are a bit more involved (which is particularly true when there are numerous internal resonances to handle). The advantage is that the parametrisation is able to go over the foldings of the manifold.

To this end, one solves Eq. (83) following the rules (depending on the presence of internal resonance or not):

$$\begin{aligned} \text{ If } \; \lambda _i \ne {\mathbf {m}}\varvec{\lambda }_L, \quad f_{{\mathbf {m}}}^i&=0, \quad \xi _{{\mathbf {m}}}^i =\frac{{\tilde{\eta }}_{{\mathbf {m}}}^i}{\lambda _i - {\mathbf {m}}\varvec{\lambda }_L}, \end{aligned}$$
(85a)
$$\begin{aligned} \text{ If } \; \lambda _i = {\mathbf {m}}\varvec{\lambda }_L, \quad f_{{\mathbf {m}}}^i&= - {\tilde{\eta }}_{{\mathbf {m}}}^i, \quad \xi _{{\mathbf {m}}}^i = 0. \end{aligned}$$
(85b)

The formulas given for this invariant manifold computation with normal form style can be extended to the case \(d=n\), and one then strictly recovers the usual full normal form of the original system [83].

Comparison of reduced dynamics

The aim of this appendix is to demonstrate the equivalence between the reduced dynamics given by the graph style as derived using the Shaw and Pierre approach, Eq. (25), to the one obtained thanks to real normal form approach, Eq. (32). In both case, reduction to a single master mode is used. Theoretically speaking, the two methods compute the same manifold and should thus provide the same dynamics. However, their formulations are differing since they are not expressed with the same variables. Let us start from the dynamics obtained using the graph style, rewritten here for the ease of reading:

$$\begin{aligned}&\ddot{x}_m + \omega _m^2 x_m + g^m_{mm} x_m^2 + x_m \left( \underset{s\ne m}{\sum _{s=1}^N} 2\,g^m_{ms} g^s_{mm}\right. \nonumber \\&\quad \left. \left[ \frac{2\omega _m^2 - \omega _s^2}{\omega _s^2 (\omega _s^2 - 4 \omega _m^2)}x_m^2 + \frac{2}{\omega _s^2 (\omega _s^2 - 4 \omega _m^2)}y_m^2 \right] \right) \nonumber \\&\qquad + h^m_{mmm} x_m^3 = 0. \end{aligned}$$
(86)

Using standard symmetry relationships on the quadratic coefficients, namely \(g^m_{sm} = g^m_{ms} = g^s_{mm}\), the equation can be rewritten as

$$\begin{aligned}&\ddot{x}_m + \omega _m^2 x_m + g^m_{mm} x_m^2 + h^m_{mmm} x_m^3 + \left( \underset{s\ne m}{\sum _{s=1}^N} (g^s_{mm})^2 \frac{2}{\omega _s^2} \right. \nonumber \\&\quad \left. \left[ \frac{2\omega _m^2 - \omega _s^2}{ (\omega _s^2 - 4 \omega _m^2)}x_m^3 + \frac{2}{ (\omega _s^2 - 4 \omega _m^2)}x_m y_m^2 \right] \right) = 0.\nonumber \\ \end{aligned}$$
(87)

On the other hand, the reduced dynamics given by normal form writes:

$$\begin{aligned}&{\ddot{R}}_m + \omega _m^2 R_m + h_{mmm}^m R_m^3 + \sum _{s=1}^n ({g}^s_{mm})^2 \frac{2}{\omega ^2_{s}} \nonumber \\&\quad \left( \frac{2 \omega ^2_m - \omega ^2_s}{\omega ^2_s-4 \omega ^2_m}\;R_m^3 + \frac{2}{\omega ^2_s-4 \omega ^2_m}\;{\dot{R}}_m^2 R_m \right) \;=\;0.\nonumber \\ \end{aligned}$$
(88)

Comparing term by term the two equations, one can observe two main differences: the presence of the quadratic term \(g^m_{mm} x_m^2\), and the summation which excludes the term \(s=m\) in the first equation. The nonlinear relationship between the modal and the normal variables, in this case of a single master coordinate, reads:

$$\begin{aligned} x_m = R_m - \frac{1}{3\omega _m^2}g^m_{mm} R_m^2 - \frac{2}{3\omega _m^2}g^m_{mm} S_m^2 + {{\mathcal {O}}}(R_m^4,S_m^4),\nonumber \\ \end{aligned}$$
(89)

where the shortcut notation \(S_m = {\dot{R}}_m\) is used. This equation is simply obtained from Eq. (28), assuming a single-mode motion, and replacing \(a^m_{mm}\), \(b^m_{mm}\) and \(\gamma ^m_{mm}\) with their exact analytical values given in [287]. Note that this expansion is valid up to fourth-order, since the cubic coefficients are vanishing: \(r^m_{mmm}=u^m_{mmm}=0\). Consequently, no cubic terms are present in (89). Replacing (89) in (87), and denoting as \(T=\ddot{x}_m + \omega _m^2 x_m + g^m_{mm} x_m^2\) the term that will produce extra quadratic and cubic terms, one arrives at:

$$\begin{aligned} T&= {\ddot{R}}_m + \omega _m^2 R_m + \frac{2g^m_{mm}}{3} R_m^2 - \frac{2g^m_{mm}}{3\omega _m^2} S_m^2 \nonumber \\&\quad - \frac{2g^m_{mm}}{3\omega _m^2} \left( {\dot{R}}_m^2 + R_m {\ddot{R}}_m \right) - \frac{4g^m_{mm}}{3\omega _m^4} \left( {\dot{S}}_m^2 + S_m {\ddot{S}}_m \right) \nonumber \\&\quad - \frac{2(g^m_{mm})^2}{3\omega _m^2} R_m^3 -\frac{4(g^m_{mm})^2}{3\omega _m^4} R_m {\dot{R}}_m^2, \end{aligned}$$
(90)

where the first line gathers linear and quadratic terms and the second the cubic terms. One can first observe that the linear terms will produce the same as those in (88), a general property of identity-tangent nonlinear mapping. In order to obtain the equivalence between the two formulations, the goal is to show that the quadratic terms are vanishing. This is easily achieved by assuming that, at lower order, \({\dot{R}}_m = i\omega _m R_m\), \({\ddot{R}}_m = -\omega _m^2 R_m\) and so on. Replacing all the combinations, one obtains that the quadratic terms exactly cancels. Also the cubic terms appearing in (90) are exactly the one obtains from the summation in Eq. (88) for \(s=m\). Consequently, the two equations are strictly equivalent up to the third order.

Implicit static condensation

This appendix aims at giving a few more details on the static condensation method, underlining the link that the ICE method shares with explicit condensation and the role of invariant-breaking terms to produce the curvatures of the stress manifold. This section use explanations reported in [255], and the interested reader is referred to this paper for more details.

Let us first underline the role of invariant-breaking terms in the construction of the stress manifold. For the sake of simplicity, let us assume modal expansion for the equations of motion, Eq. (13), and that only \(x_m\) is selected as master mode. The method consists in applying a static body force of the form \({\mathbf {f}}_\text {e} = \beta _m {\mathbf {M}}\varvec{\phi }_m\) for several values of \(\beta _m\in {\mathbb {R}}\), to compute with the FE code the corresponding displacement \({\mathbf {X}}(\beta _m)\) and the modal coordinates \(x_i(\beta _m)\) by modal expansion. It results in solving the following system:

$$\begin{aligned}&\omega _m^2 x_m + \sum _{i=1}^{N} \sum _{j=1}^{N} g_{ij}^m x_i x_j \nonumber \\&\quad + \sum _{i=1}^{N} \sum _{j=1}^{N} \sum _{k=1}^{N} h_{ijk}^m x_ix_jx_k = \beta _m, \end{aligned}$$
(91a)
$$\begin{aligned}&\forall s \ne m,\quad \omega _s^2 x_s + \sum _{i=1}^{N} \sum _{j=1}^{N} g_{ij}^s x_i x_j \nonumber \\&\quad + \sum _{i=1}^{N} \sum _{j=1}^{N} \sum _{k=1}^{N} h_{ijk}^s x_ix_jx_k = 0, \end{aligned}$$
(91b)

in which the forcing is aligned with the m-th eigenvector, resulting in a zero forcing of the other oscillators, for \(s\ne m\). Because of this last property and the implicit function theorem, Eq. (91b) leads to the existence of a static nonlinear relationship between the slave coordinates \(x_s\) and the master one \(x_m\), expressed formally as:

$$\begin{aligned} x_s = c_s (x_m),\quad \forall s\ne m. \end{aligned}$$
(92)

Replacing in Eq. (91a), the reduced-order dynamics simply reads:

$$\begin{aligned} \ddot{x}_m + \underbrace{\omega _m^2 x_m + \sum _{i=1}^{N} \sum _{j=1}^{N} g_{ij}^m c_i (x_m) c_j(x_m) + \sum _{i=1}^{N} \sum _{j=1}^{N} \sum _{k=1}^{N} h_{ijk}^m c_i (x_m) c_j(x_m) c_k(x_m) }_{\beta _m(x_m)}= 0, \end{aligned}$$
(93)

in which \(\beta _m(x_m)\) can be identified as a polynomial in \(x_m\) to obtain the reduced order dynamics at any order. From the above developments, it is clear that the dynamics of Eq. (93) is equivalent to the one of the full model with all the slave modal coordinates \(x_s\) statically condensed into the master dynamics.

The general explicit solution to Eq. (92) with closed formulation is generally out of reach such that the \(c_s\) functions are known implicitly. Nevertheless, they can be searched for as polynomial expansions and the first terms can be found. In particular, the quadratic term of the development is easy to find and is sufficient to derive the third-order dynamics, it reads [255]:

$$\begin{aligned} c_s (x_m) = -\frac{g^s_{mm}}{\omega _s^2} x_m^2 + {\mathcal {O}}(x_m^3), \end{aligned}$$
(94)

which, substituted into Eq. (93) with a subsequent truncation up to third order leads to Eq. (37).

Moreover, Eq. (91b) shows that in the nonlinear terms, the important invariant-breaking terms \(g^s_{mm} x_m^2\) and \(h^s_{mmm} x_m^3\) have a large magnitude, and these terms create a nonzero static response for \(x_s\). These couplings make the manifold depart from the linear eigensubspace to create the stress manifold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touzé, C., Vizzaccaro, A. & Thomas, O. Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn 105, 1141–1190 (2021). https://doi.org/10.1007/s11071-021-06693-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06693-9

Keywords

Navigation