Skip to main content
Log in

Bifurcation analysis of vortex-induced vibration of low-dimensional models of marine risers

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A low-dimensional model of a top-tensioned riser under excitations from vortices and time-varying tension is proposed, where the van der Pol wake oscillator is used to simulate the loading caused by the vortex shedding. The governing partial differential equations describing the fluid–structure interactions are formulated and multi-mode approximations are obtained using the Galerkin projection method. The one mode approximation is applied in this study and two different resonances are investigated by employing the method of multiple scales. They are the 1:1 internal resonance between the structure and wake oscillator (also known as ‘lock-in’ phenomenon) and the combined 1:1 internal and 1:2 parametric resonances. Bifurcations under the varying nondimensional shedding frequency for different mass–damping parameters are investigated and the results of multiple-scale analysis are compared with direct numerical simulations. Analytical responses are calculated using the continuation method and their stability is determined by examining the eigenvalues of the corresponding characteristic equations. Effects of the system parameters including the amplitude of the tension variation, vortex shedding frequency and mass–damping parameter on the system bifurcations have been investigated. The analytical approach has allowed to probe bifurcations occurring in the system and to identify stable and unstable responses. It is shown that the combined resonances can induce large-amplitude vibration of the structure. Counter-intuitively, the amplitude of such responses increases rapidly as the amplitude of the tension variation grows. Comparisons between the analytical and numerical results confirm that the span of the system vibration can be accurately predicted analytically with respect to the obtained response amplitudes of responses. The proposed multi-mode approximation and presented findings of this study can be used to enhance design process of top tension risers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibration. J. Fluids Struct. 19, 389–447 (2004)

    Article  Google Scholar 

  2. Williamson, C.H.K., Govardhan, R.: Vortex-induced vibrations. Ann. Rev. Fluid Mech. 36, 413–455 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Williamson, C.H.K., Govardhan, R.: A brief review of recent results in vortex-induced vibrations. J. Wind Eng. Ind. Aerodynam. 96, 713–735 (2008)

    Article  Google Scholar 

  4. Hong, K.-S., Shah, U.H.: Vortex-induced vibrations and control of marine risers: a review. Ocean Eng. 152, 300–315 (2018)

    Article  Google Scholar 

  5. Liu, G., Li, H., Qiu, Z., Leng, D., Li, Z., Li, W.: Review: a mini review of recent progress on vortex-induced vibrations of marine risers. Ocean Eng. 195, 1–17 (2020)

    Article  Google Scholar 

  6. Jaiswal V., Vandiver J.K.: VIV response prediction for long risers with variable damping. In: Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, OMAE2007-29353, pp.1–9 (2007)

  7. Morooka, C.K., Tsukada, R.I.: Experiments with a steel catenary riser model in a towing tank. Appl. Ocean Res. 43, 244–255 (2013)

    Article  Google Scholar 

  8. Franzini, G.R., Gonçalves, R.T., Pesce, C.P., Fujarra, A.L.C., Mazzilli, C.E.N., Meneghini, J.R., Mendes, P.: Vortex-induced vibration experiments with a long semi-immersed flexible cylinder under tension modulation: fourier transform and Hilbert-Huang spectral analyses. J. Brazil. Soc. Mech. Sci. Eng. 37, 589–599 (2015)

    Article  Google Scholar 

  9. Mao, L.J., Cai, M.J., Yang, Y.L., Wang, G.R.: Experimental study of the vortex-induced vibration of marine risers under middle flow. J. Vibroeng. 20, 602–620 (2018)

    Article  Google Scholar 

  10. Wang, C.G., Cui, Y.Y., Ge, S.Q., Sun, M.Y., Jia, Z.R.: Experimental study on vortex-induced vibration of risers considering the effects of different design parameters. Appl. Sci. 8, 1–19 (2018)

    Google Scholar 

  11. Zhu, H., Gao, Y., Zhao, H.: Coupling vibration response of a curved flexible riser under the combination of internal slug flow and external shear current. J. Fluids Struct. 91, 1–32 (2019)

    Article  Google Scholar 

  12. Chen, W., Li, M., Zheng, Z., Tan, T.: Dynamic characteristics and VIV of deepwater riser with axially varying structural properties. Ocean Eng. 42, 7–12 (2012)

    Article  Google Scholar 

  13. Xue, H.X., Wang, K.P., Tang, W.Y.: A practical approach to predicting cross-flow and in-line VIV response for deepwater risers. Appl. Ocean Res. 52, 92–101 (2015)

    Article  Google Scholar 

  14. Bourguet, R., Triantafyllou, M.S.: Vortex-induced vibrations of a flexible cylinder at large inclination angle. Philos. Trans. R. Soc. A 373, 1–19 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tofa, M.M., Maimun, A., Ahmed, Y.M.: Effect of upstream cylinder’s oscillation frequency on downstream cylinder’s vortex induced vibration. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, pp. 11-17 (2016)

  16. Duan, J., Chen, K., You, Y., Li, J.: Numerical investigation of vortex-induced vibration of a riser with internal flow. Appl. Ocean Res. 72, 110–121 (2018)

    Article  Google Scholar 

  17. Ulveseter, J.V., Thorsen, M.J., Sævik, S., Larsen, C.M.: Simulating fundamental and higher harmonic VIV of slender structures. Appl. Ocean Res. 90, 1–16 (2019)

    Article  Google Scholar 

  18. Xue, H.X., Yuan, Y.C., Tang, W.Y.: Numerical investigation on vortex-induced vibration response characteristics for flexible risers under sheared-oscillatory flows. Int. J. Naval Architect. Ocean Eng. 11, 923–938 (2019)

    Article  Google Scholar 

  19. Li, X.M., Wei, W.F., Bai, F.T.: A full three-dimensional vortex-induced vibration prediction model for top-tensioned risers based on vector form intrinsic finite element method. Ocean Eng. 218, 1–18 (2020)

    Article  Google Scholar 

  20. Sanaati, B., Kato, N.: Vortex-induced vibration (VIV) dynamics of a tensioned flexible cylinder subjected to uniform cross-flow. J. Marine Sci. Technol. 18, 247–261 (2013)

    Article  Google Scholar 

  21. Chen, W., Zhang, Q., Li, H., Hu, H.: An experimental investigation on vortex induced vibration of a flexible inclined cable under a shear flow. J. Fluids Struct. 54, 297–311 (2015)

    Article  Google Scholar 

  22. Hu, Z., Wang, J., Sun, Y.: Flow-induced vibration of one-fixed-one-free tandem arrangement cylinders with different mass-damping ratios using wind tunnel experiment. J. Fluids Struct. 96, 1–25 (2020)

    Article  Google Scholar 

  23. Tsahalis D.T., Jones W.T.: Vortex-induced vibrations of a flexible cylinder near a plane boundary in steady flow. In: Offshore Technology Conference, Houston, Texas (1981)

  24. Yang, B., Gao, F., Jeng, D., Wu, Y.: Experimental study of vortex-induced vibrations of a cylinder near a rigid plane boundary in steady flow. Acta Mechanica Sinica 25, 51–63 (2009)

    Article  Google Scholar 

  25. He, C.J., Duan, Z.D., Ou, J.P.: Numerical simulation of self-excited and forced vibration of circular cylinders in current. China Ocean Eng. 24, 135–144 (2010)

    Google Scholar 

  26. Sun, L., Liu, C.F., Zong, Z., Dong, X.L.: Fatigue damage analysis of the deepwater riser from VIV using pseudo-excitation method. Marine Struct. 37, 86–110 (2014)

    Article  Google Scholar 

  27. Fu, B.W., Duan, M.Y., Wan, D.C.: Effect of mass ratio on the vortex-induced vibrations of a top tensioned riser. In: The Second Conference of Global Chinese Scholars on Hydrodynamics, Wuxi, China, Nov. (2016)

  28. Song, L., Fu, S., Cao, J., Ma, L., Wu, J.: An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration. J. Fluids Struct. 63, 325–350 (2016)

    Article  Google Scholar 

  29. Konstantinidis, E., Zhao, J., Leontini, J., Jacono, D.L., Sheridan, J.: Phase dynamics of effective drag and lift components in vortex-induced vibration at low mass-damping. J. Fluids Struct. 96, 1–26 (2020)

    Article  Google Scholar 

  30. Facchinetti, M.L., de Langrea, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibration. J. Fluids Struct. 19, 123–140 (2004)

    Article  Google Scholar 

  31. Zanganeh, H., Srinil, N.: Three-dimensional VIV prediction model for a long flexible cylinder with axial dynamics and mean drag magnifications. J. Fluids Struct. 66, 127–146 (2016)

    Article  Google Scholar 

  32. Postnikov, A., Pavlovskaia, E., Wiercigroch, M.: 2DOF CFD calibrated wake oscillator model to investigate vortex-induced vibrations. Int. J. Mech. Sci. 127, 176–90 (2017)

    Article  Google Scholar 

  33. Kurushina, V., Pavlovskaia, E., Postnikov, A., Wiercigroch, M.: Calibration and comparison of VIV wake oscillator models for low mass ratio structures. Int. J. Mech. Sci. 142–143, 547–560 (2018)

    Article  Google Scholar 

  34. Kurushina, V., Pavlovskaia, E., Wiercigroch, M.: VIV of flexible structures in 2D uniform flow. Int. J. Eng. Sci. 150, 1–24 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pavlovskaia, E., Keber, M., Postnikov, A., Reddington, K., Wiercigroch, M.: Multi-modes approach to modelling of vortex-induced vibration. Int. J. Non-Linear Mech. 80, 40–51 (2016)

    Article  Google Scholar 

  36. Ogink, R.H.M., Metrikine, A.V.: A wake oscillator with frequency dependent coupling for the modeling of vortex-induced vibration. J. Sound Vibrat. 329, 5452–5473 (2010)

    Article  Google Scholar 

  37. Qu, Y., Metrikine, A.V.: A wake oscillator model with nonlinear coupling for the vortex-induced vibration of a rigid cylinder constrained to vibrate in the cross-flow direction. J. Sound Vibrat. 469, 1–26 (2020)

    Article  Google Scholar 

  38. Hsu, C.S.: The response of a parametrically excited hanging string in fluid. J. Sound Vibrat. 39, 305–316 (1975)

    Article  MATH  Google Scholar 

  39. Chatjigeorgiou, I.K., Mavrakos, S.A.: Bounded and unbounded coupled transverse response of parametrically excited vertical marine risers and tensioned cable legs for marine applications. Appl. Ocean Res. 24, 341–354 (2002)

    Article  Google Scholar 

  40. Chatjigeorgiou, I.K., Mavrakos, S.A.: Nonlinear resonances of parametrically excited risers—numerical and analytic investigation for \(\Omega =2{\omega }_{1}\). Comput. Struct. 83, 560–573 (2005)

  41. Zhang, J., Guo, H., Tang, Y., Li, Y.: Effect of top tension on vortex-induced vibration of deep-sea risers. J. Marine Sci. Eng. 8, 1–14 (2020)

    Article  Google Scholar 

  42. Li, P., Cong, A., Dong, Z., Wang, Y., Liu, Y., Guo, H., Li, X., Fu, Q.: Investigation on vortex-induced vibration experiment of a standing variable-Tension deepsea riser based on BFBG sensor technology. Sensors 19, 1–19 (2019)

    Google Scholar 

  43. Srinil, N.: Analysis and prediction of vortex-induced vibrations of variable-tension vertical risers in linearly sheared currents. Appl. Ocean Res. 33, 41–53 (2011)

    Article  Google Scholar 

  44. Yang, H., Xiao, F.: Instability analyses of a top-tensioned riser under combined vortex and multi-frequency parametric excitations. Ocean Eng. 81, 12–28 (2014)

    Article  Google Scholar 

  45. Yang, H., Xiao, F., Xu, P.: Parametric instability prediction in a top-tensioned riser in irregular waves. Ocean Eng. 70, 39–50 (2013)

    Article  Google Scholar 

  46. Wang, Y., Gao, D., Fang, J.: Coupled dynamic analysis of deepwater drilling riser under combined forcing and parametric excitation. J. Natural Gas Sci. Eng. 27, 1739–1747 (2015)

    Article  Google Scholar 

  47. Thorsen, M.J., Sævik, S.: Vortex-induced vibrations of a vertical riser with time-varying tension. Proc. Eng. 199, 1326–1331 (2017)

    Article  Google Scholar 

  48. Fu, B., Wan, D.: Numerical study of vibrations of a vertical tension riser excited at the top end. J. Ocean Eng. Sci. 2, 268–278 (2017)

    Article  Google Scholar 

  49. Yuan, Y., Xue, H., Tang, W.: A numerical investigation of vortex-induced vibration response characteristics for long flexible cylinders with time-varying axial tension. J. Fluids Struct. 77, 36–57 (2018)

    Article  Google Scholar 

  50. Zhang, X., Gou, R., Yang, W., Chang, X.: Vortex-induced vibration dynamics of a flexible fluid-conveying marine riser subjected to axial harmonic tension. J. Brazil. Soc. Mech. Sci. Eng. 40, 1–12 (2018)

    Article  Google Scholar 

  51. Lou, M., Hu, P., Qi, X., Li, H.: Stability analysis of deepwater compliant vertical access riser about parametric excitation. Int. J. Naval Architect. Ocean Eng. 11, 688–698 (2019)

    Article  Google Scholar 

  52. Wu, Z., Xie, C., Mei, G., Dong, H.: Dynamic analysis of parametrically excited marine riser under simultaneous stochastic waves and vortex. Adv. Struct. Eng. 22, 268–283 (2019)

    Article  Google Scholar 

  53. Gao, G., Cui, Y., Qiu, X.: Prediction of vortex-induced vibration response of deep sea top-tensioned riser in sheared flow considering parametric excitations. Polish Maritime Res. 2, 48–57 (2020)

    Article  Google Scholar 

  54. Zhu, H., Geng, G., Yu, Y., Xu, L.: Probabilistic analysis on parametric random vibration of a marine riser excited by correlated Gaussian white noises. Int. J. Non-Linear Mech. 126, 1–10 (2020)

    Article  Google Scholar 

  55. Liu, Guijie, Li, Haiyang, Qiu, Zhaozun, Li, Zhixiong: A comprehensive numerical analysis of cross-flow vortex-induced vibrations for top tension risers under different flows. Phys. Fluids 32, 1–21 (2020)

    Google Scholar 

  56. Koska, R., Kaculi, J., Campbell, M., Mills, D.: Minimizing interference between top tension risers for tension leg platforms. In: Proceedings of the ASME, 32nd International Conference on Ocean, Offshore and Arctic Engineering, France (2013)

  57. Keber, M., Wiercigroch, M.: Dynamics of a vertical riser with weak structural nonlinearity excited by wakes. J. Sound Vibrat. 315(3), 685–699 (2008)

    Article  Google Scholar 

  58. Keber, M.: Vortex induced vibration of offshore risers: theoretical modelling and analysis. Aberdeen (2012). (PhD thesis)

  59. Wang, D., Chen, Y., Wiercigroch, M., Cao, Q.: A three-degree-of-freedom model for vortex-induced vibrations of turbine blades. Meccanica 51, 2607–2628 (2016)

    Article  MathSciNet  Google Scholar 

  60. Wang, D., Chen, Y., Wiercigroch, M., Cao, Q.: Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices. Appl. Math. Mech. (English Edition) 37, 1251–1274 (2016)

  61. Clough R. W., Penzien J.: Dynamics of structures. Computers and Structures, Inc., 3rd edition, (2003)

  62. Keber, M., Wiercigroch, M.: A reduced order model for vortex-induced vibration of a vertical offshore riser in lock-in. In: IUTAM symposium on fluid-structure interaction in Ocean engineering, Iutam Bookseries 8, 155–166 (2008)

  63. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Springer, New York (1979)

    MATH  Google Scholar 

  64. Nayfeh, A.H.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dynam. 40(1), 61–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  65. Schmidt, G., Tondl, A.: Nonlinear vibrat. Cambridge University Press, Cambridge (1986)

    Google Scholar 

Download references

Acknowledgements

The first two authors acknowledge the financial supports of the National Natural Science Foundation of China (Nos. 11702111, 11732014), the Natural Science Foundation of Shandong Province (No. ZR2017QA005) and the State Scholarship Fund of CSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Hao, Z., Pavlovskaia, E. et al. Bifurcation analysis of vortex-induced vibration of low-dimensional models of marine risers. Nonlinear Dyn 106, 147–167 (2021). https://doi.org/10.1007/s11071-021-06808-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06808-2

Keywords

Navigation