Skip to main content
Log in

Localized waves and mixed interaction solutions with dynamical analysis to the Gross–Pitaevskii equation in the Bose–Einstein condensate

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We report a kind of breather, rogue wave, and mixed interaction structures on a variational background height in the Gross–Pitaevskii equation in the Bose–Einstein condensate by the generalized Darboux transformation method, and the effects of related parameters on rogue wave structures are discussed. Numerical simulation can discuss the dynamics and stability of these solutions. We numerically confirm that these are correct and can be reproduced from a deterministic initial profile. Results show that rogue waves and mixed interaction solutions can evolve with a small amplitude perturbation under the initial profile conditions, but breathers cannot. Therefore, these can be used to anticipate the feasibility of their experimental observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The authors declare that all data generated or analyzed during this study are included in this article.

References

  1. Cardoso, W.B., Teixeira, R.M.P.: Scattering of solitons in binary Bose-Einstein condensates with spin-orbit and Rabi couplings. Nonlinear Dyn. 96, 1147–1167 (2019)

    Article  MATH  Google Scholar 

  2. Gavioli, A., Sacchetti, A.: On a mathematical model for a damped and driven double-well Bose-Einstein condensate. Physica D 414, 132711 (2020)

    Article  MathSciNet  Google Scholar 

  3. Wang, D.S., Shi, Y.R., Feng, W.X., Wen, L.: Dynamical and energetic instabilities of \(F=2\) spinor Bose-Einstein condensates in an optical lattice. Physica D 351–352, 30–41 (2017)

    Article  MathSciNet  Google Scholar 

  4. Khawaja, U.A.: Integrability of a general Gross-Pitaevskii equation and exact solitonic solutions of a Bose-Einstein condensate in a periodic potential. Phys. Lett. A 373, 2710–2716 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. He, J.S., Charalampidis, E.G., Kevrekidis, P.G., Frantzeskakis, D.J.: Rogue waves in nonlinear Schrödinger models with variable coefficients: application to Bose-Einstein condensates. Phys. Lett. A 378, 577–583 (2014)

    Article  MATH  Google Scholar 

  6. Kim, K., Hur, J., Huh, S., Choi, S., Choi, J.Y.: Emission of spin-correlated matter-wave jets from spinor Bose-Einstein condensates. Phys. Rev. Lett. 127, 043401 (2021)

    Article  MathSciNet  Google Scholar 

  7. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R., et al.: Emergent nonlinear phenomena in Bose-Einstein Condensates. Springer-Verlag, Berlin, Heidelberg (2008)

    Book  MATH  Google Scholar 

  8. Wang, D.S., Song, S.W., Xiong, B., Liu, W.M.: Quantized vortices in a rotating Bose-Einstein condensate with spatiotemporally modulated interaction. Phys. Rev. A 84, 053607 (2011)

    Article  Google Scholar 

  9. Dalfovo, F., Giorgini, S., Pitaevskii, L., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  Google Scholar 

  10. Feder, D.L., Svidzinsky, A.A., Fetter, A.L., Clark, C.W.: Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates. Phys. Rev. Lett. 86, 564 (2001)

    Article  Google Scholar 

  11. García-Ripoll, J.J., Pérez-García, V.M.: Vortex bending and tightly packed vortex lattices in Bose-Einstein condensates. Phys. Rev. A 64, 053611 (2001)

    Article  Google Scholar 

  12. Saito, H., Ueda, M.: Emergence of bloch bands in a rotating bose-einstein condensate. Phys. Rev. Lett. 93, 220402 (2004)

    Article  Google Scholar 

  13. Shaukat, M.I., Castro, E.V., Terças, H.: Quantum dark solitons as qubits in Bose-Einstein condensates. Phys. Rev. A 95, 053618 (2017)

    Article  Google Scholar 

  14. Meng, H., Zhou, Y., Li, X., Ren, X., Wan, X., Zhou, Z., Wang, W., Shi, Y.: Gap solitons in Bose-Einstein condensate loaded in a honeycomb optical lattice: Nonlinear dynamical stability, tunneling, and self-trapping. Physica A 577, 126087 (2021)

    Article  MathSciNet  Google Scholar 

  15. Yan, Y.Y., Liu, W.J.: Soliton rectangular pulses and bound states in a dissipative system modeled by the variable-coefficients complex cubic-quintic Ginzburg-Landau equation. Chin. Phys. Lett. 38, 094201 (2021)

    Article  Google Scholar 

  16. Bhat, I.A., Sivaprakasam, S., Malomed, B.A.: Modulational instability and soliton generation in chiral Bose-Einstein condensates with zero-energy nonlinearity. Phys. Rev. E 103, 032206 (2021)

    Article  MathSciNet  Google Scholar 

  17. Fritsch, A.R., Lu, M., Reid, G.H., Piñeiro, A.M., Spielman, I.B.: Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates. Phys. Rev. A 101, 053629 (2020)

    Article  Google Scholar 

  18. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)

    Article  Google Scholar 

  19. Qin, Z., Mu, G.: Matter rogue waves in an \(F=1\) spinor Bose-Einstein condensate. Phys. Rev. E 86, 036601 (2012)

    Article  Google Scholar 

  20. Yu, F.: Matter rogue waves and management by external potentials for coupled Gross-Pitaevskii equation. Nonlinear Dyn. 80, 685–699 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Trombettoni, A., Smerzi, A.: Discrete solitons and breathers with dilute Bose-Einstein condensates. Phys. Rev. Lett. 86, 2353–2356 (2001)

    Article  Google Scholar 

  22. Cardoso, W.B., Avelar, A.T., Bazeia, D.: Modulation of breathers in cigar-shaped Bose-Einstein condensates. Phys. Lett. A 374, 2640–2645 (2010)

    Article  MATH  Google Scholar 

  23. Shomroni, I., Lahoud, E., Levy, S., Steinhauer, J.: Evidence for an oscillating soliton/vortex ring by density engineering of a Bose-Einstein condensate. Nat. Phys. 5, 193–197 (2009)

    Article  Google Scholar 

  24. Rosenbusch, P., Bretin, V., Dalibard, J.: Dynamics of a singlevortex line in a Bose-Einstein condensate. Phys. Rev. Lett. 89, 200403 (2002)

    Article  Google Scholar 

  25. Bretin, V., Rosenbusch, P., Dalibard, J.: Dynamics of a single vortex line in a Bose-Einstein condensate. J. Opt. B: Quant. Semiclass. Opt. 5, S23–S28 (2003)

    Article  Google Scholar 

  26. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Springer-Verlag, Berlin, Heidelberg (1999)

    MATH  Google Scholar 

  27. Alotaibi, M.O.D., Carr, L.D.: Internal oscillations of a dark-bright soliton in a harmonic potential. J. Phys. B: At. Mol. Opt. Phys. 51, 205004 (2018)

    Article  Google Scholar 

  28. Xu, T., Chen, Y.: Darboux transformation of the coupled nonisospectral Gross-Pitaevskii system and its multi-component generalization. Commun. Nonlinear Sci. Numer. Simulat. 57, 276–289 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yan, Z.: Two-dimensional vector rogue wave excitations and controlling parameters in the two-component Gross-Pitaevskii equations with varying potentials. Nonlinear Dyn. 79, 2515–2529 (2015)

    Article  MathSciNet  Google Scholar 

  30. Dai, C.Q., Zhou, G.Q., Chen, R.P., Lai, X.J., Zheng, J.: Vector multipole and vortex solitons in two-dimensional Kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)

    Article  MathSciNet  Google Scholar 

  31. Sun, W.R., Wang, L.: Matter rogue waves for the three-component Gross-Pitaevskii equations in the spinor Bose-Einstein condensates. P. Roy. Soc. A 474, 20170276 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Weidemüller, M., Zimmermann, C.: Interactions in ultracold gases: from atoms to molecules. Wiley-Vch, Weinheim (2003)

    Book  Google Scholar 

  33. Agrawal, G.: Nonlinear Fiber Optics, 5th edn. Academic Press, New York (2013)

    MATH  Google Scholar 

  34. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, New York (2003)

    Google Scholar 

  35. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B: Quant. Semiclass. Opt. 7, R53–R72 (2005)

    Article  Google Scholar 

  36. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  Google Scholar 

  37. Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Article  Google Scholar 

  38. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013)

    Article  MathSciNet  Google Scholar 

  39. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  Google Scholar 

  40. Wazwaz, A.M., Kaur, L.: Complex simplified Hirotas forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-Sine-Gordon equation. Nonlinear Dyn. 95, 2209–2215 (2019)

    Article  MATH  Google Scholar 

  41. Wazwaz, A.M.: Painlevé analysis for Boiti-Leon-Manna-Pempinelli equation of higher dimensions with time-dependent coefficients: multiple soliton solutions. Phys. Lett. A 384, 126310 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, L., Luan, Z., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.: Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing term. Nonlinear Dyn. 104, 2613–2620 (2021)

    Article  Google Scholar 

  43. Sun, B., Wazwaz, A.M.: General high-order breathers and rogue waves in the (3+1)-dimensional KP-Boussinesq equation. Commun. Nonlinear Sci. Numer. Simulat. 64, 1–13 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yue, Y., Huang, L., Chen, Y.: \(N\)-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation. Comput. Math. Appl. 75, 2538–2548 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Su, C.Q., Gao, Y.T., Xue, L., Wang, Q.M.: Nonautonomous solitons, breathers and rogue waves for the Gross-Pitaevskii equation in the Bose-Einstein condensate. Commun. Nonlinear Sci. Numer. Simulat. 36, 457–467 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kengne, E., Lakhssassi, A., Liu, W.M.: Non-autonomous solitons in inhomogeneous nonlinear media with distributed dispersion. Nonlinear Dyn. 97, 449–469 (2019)

    Article  MATH  Google Scholar 

  47. Sun, W.R., Tian, B., Jiang, Y., Zhen, H.L.: Double-Wronskian solitons and rogue waves for the inhomogeneous nonlinear Schrödinger equation in an inhomogeneous plasma. Ann. Phys. 343, 215–227 (2014)

    Article  MATH  Google Scholar 

  48. Li, L., Li, Z., Li, S., Zhou, G.: Modulation instability and solitons on a CW background in inhomogeneous optical fiber media. Opt. Commun. 234, 169–176 (2004)

    Article  Google Scholar 

  49. Tao, Y.S., He, J.S., Porsezian, K.: Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation. Chin. Phys. B 22, 074210 (2013)

    Article  Google Scholar 

  50. Wen, X.Y., Yang, Y., Yan, Z.: Generalized perturbation \((n, M)\)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation. Phys. Rev. E 92, 012917 (2015)

    Article  MathSciNet  Google Scholar 

  51. Wang, H.T., Wen, X.Y.: Modulational instability, interactions of two-component localized waves and dynamics in a semi-discrete nonlinear integrable system on a reduced two-chain lattice. Eur. Phys. J. Plus 136, 461 (2021)

    Article  Google Scholar 

  52. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

Download references

Funding

This work has been supported by the National Natural Science Foundation of China (12075034, 11875008); Fundamental Research Funds for the Central Universities (2019XD-A09-3) ; the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology (No. SKL2018KF04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Ethical approval

The authors declare that they have adhered to the ethical standards of research execution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Second-order RW solution \(\psi \) in Fig. 1(a3)(b3) is expressed as \(q=-\frac{49152\ F}{G}\mathrm{e}^{2t-\frac{\mathrm{i}x^2}{2}+2\mathrm{i}\mathrm{e}^{4t}}\), where

$$\begin{aligned} \begin{aligned} F=\,&\Big [ {\frac{19325}{24}}+{\frac{3127\,\mathrm{i}}{16}}-\frac{1}{6}\,{x}^{6}+ \Big ({\frac{25}{4}}+\frac{\mathrm{i}}{2} \Big ) {x}^{4}\\&-\Big ( {\frac{1863}{16}}+{\frac{75\,\mathrm{i}}{4}} \Big ) {x}^{2} \Big ] {\mathrm{e}^{12\,t}}+ \Big [ -{\frac{1905653}{512}}\\&-{\frac{9775\,\mathrm{i}}{8}}\\&-\Big ( {\frac{627}{32}}+{\frac{25\,\mathrm{i}}{8}} \Big ) {x}^{4}+\Big ( {\frac{1925}{4}}+{\frac{1875\,\mathrm{i}}{16}} \Big ) {x}^{2} \Big ] {\mathrm{e}^{8\,t}}\\&-\frac{1}{2}\,x \Big [ -{\frac{315}{4}}-{\frac{75\,\mathrm{i}}{4}}-\frac{1}{2}\,{x}^{4}+\Big ( {\frac{25}{2}}+\mathrm{i}\Big ) {x}^{2} \Big ] {\mathrm{e}^{10\,t}}\\&+ \Big [ -{\frac{3115}{32}}-{\frac{125\,\mathrm{i}}{8}}-\frac{1}{2}\,{x}^{4}+\Big ( {\frac{25}{2}}+\mathrm{i}\Big ) {x}^{2} \Big ] {\mathrm{e}^{16\,t}}\\&+ \Big [ {\frac{9297875}{1024}}+{\frac{1950701\,\mathrm{i}}{512}}- \Big ( {\frac{385501}{512}}\\&+{\frac{3925\,\mathrm{i}}{16}}\Big ) {x}^{2} \Big ] {\mathrm{e}^{4\,t}}\\&+{\frac{25\,x}{8} \Big [ -{\frac{13}{8}}-{\frac{318\,\mathrm{i}}{25}}+\Big ( {\frac{206}{25}}+\mathrm{i} \Big ) {x}^{2} \Big ] {\mathrm{e}^{6\,t}}}\\&-\frac{1}{2}\,x \Big ( -{x}^{2}+{\frac{25}{2}}+\mathrm{i} \Big ) {\mathrm{e}^{14\,t}}+ \Big ( {\frac{25}{4}}+\frac{\mathrm{i}}{2}\\&-\frac{1}{2}\,{x}^{2}\Big ) {\mathrm{e}^{20\,t}}\\&-\Big ( {\frac{365837}{1024}}-{\frac{625\,\mathrm{i}}{128}} \Big ) x{\mathrm{e}^{2\,t}}-\frac{1}{6}\,{\mathrm{e}^{24\,t}}\\&-{\frac{224635711}{24576}}-{\frac{9674075\,\mathrm{i}}{2048}}+\frac{1}{4}\,{\mathrm{e}^{18\,t}}x, \end{aligned} \end{aligned}$$
$$\begin{aligned} G=\,&\big ( 4096\,{x}^{6}-153600\,{x}^{4}+2880000\,{x}^{2}\\&-20172800\big ) {\mathrm{e}^{12\,t}}\\&+ \big ( 484608\,{x}^{4}-12057600\,{x}^{2}+95075952 \big ) {\mathrm{e}^{8\,t}}\\&+ \big ( -6144\,{x}^{5}+153600\,{x}^{3}-976896\,x \big ) {\mathrm{e}^{10\,t}}\\&+ \big ( 12288\,{x}^{4}-307200\,{x}^{2}+2407680 \big ) {\mathrm{e}^{16\,t}}\\&+ \big ( 19226352\,{x}^{2}\\&-238192200 \big ) {\mathrm{e}^{4\,t}}+\big ( -635904\,{x}^{3}\\&+240000\,x\big ) {\mathrm{e}^{6\,t}}\\&+ \big ( -12288\,{x}^{3}+153600\,x \big ) {\mathrm{e}^{14\,t}}+ \big ( 12288\,{x}^{2}\\&-153600 \big ) {\mathrm{e}^{20\,t}}-6144\,x{\mathrm{e}^{18\,t}}+8534712\,x{\mathrm{e}^{2\,t}}\\&+4096\,{\mathrm{e}^{24\,t}}+248134411. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhou, Q., Biswas, A. et al. Localized waves and mixed interaction solutions with dynamical analysis to the Gross–Pitaevskii equation in the Bose–Einstein condensate. Nonlinear Dyn 106, 841–854 (2021). https://doi.org/10.1007/s11071-021-06851-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06851-z

Keywords

Navigation