Skip to main content
Log in

Numerical differentiation with annihilators in noisy environment

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Numerical differentiation in noisy environment is revised through an algebraic approach. For each given order, an explicit formula yielding a pointwise derivative estimation is derived, using elementary differential algebraic operations. These expressions are composed of iterated integrals of the noisy observation signal. We show in particular that the introduction of delayed estimates affords significant improvement. An implementation in terms of a classical finite impulse response (FIR) digital filter is given. Several simulation results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover Publications (1965)

  2. Al-Alaoui, M.A.: A class of second-order integrators and low-pass differentiators. IEEE Trans. Circuits Syst. I 42(4), 220–223 (1995)

    Article  Google Scholar 

  3. Alpay, D.: Algorithme de Schur, espaces à noyau reproduisant et théorie des systèmes, Panoramas et Synthèses, vol. 6. Société mathématique de France (1998)

  4. Aronszajn, N.: Theory of reproducing kernels. Trans. AMS 68(3), 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, C.K., Lee, J.H.: Design of high-order digital differentiators using L 1 error criteria. IEEE Trans. Circuits Syst. II 42(4), 287–291 (1995)

    Article  MathSciNet  Google Scholar 

  6. Chitour, Y.: Time-varying high-gain observers for numerical differentiation. IEEE Trans. Automat. Contr. 47, 1565–1569 (2002)

    Article  MathSciNet  Google Scholar 

  7. Dabroom, A.M., Khalil, H.K.: Discrete-time implementation of high-gain observers for numerical differentiation. Int. J. Control 72, 1523–1537 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Diop, S., Grizzle, J.W., Chaplais, F.: On numerical differentiation algorithms for nonlinear estimation. In: Proc. CDC. Sydney (2000)

  9. Duncan, T.E., Mandl, P., Pasik-Duncan, B.: Numerical differentiation and parameter estimation in higher-order linear stochastic systems. IEEE Trans. Automat. Contr. 41, 522–532 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fliess, M.J.C., Sira Ramírez, H.: Closed-loop fault-tolerant control for uncertain nonlinear systems. In: Meurer, T., Graiche, K., Gilles, E. (eds.) Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems. Lect. Notes Control Informat. Sci., vol. 322, pp. 217–233. Springer (2005)

  11. Fliess, M., Join, C., Mboup, M., M., H.S.R.: Compression différentielle de transitoires bruités. CRAS, Série 1, Mathématiques 339, 821–826 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Fliess, M., Join, C., Mboup, M., Sira Ramírez, H.: Analyse et représentation de signaux transitoires : application à la compression, au débruitage et à la détection de ruptures. In: Actes 20e Coll. GRETSI. Louvain-la-Neuve (2005). http://hal.inria.fr/inria-00001115

  13. Fliess, M., Join, C., Sedoglavic, A.: Estimation des dérivées d’un signal multidimensionnel avec applications aux images et aux vidéos. In: Actes 20e Coll. GRETSI. Louvain-la-Neuve (2005). http://hal.inria.fr/inria-00001116

  14. Fliess, M., Mboup, M., Mounier, H., Sira-Ramírez, H.: Questioning some paradigms of signal processing via concrete examples. In: Sira-Ramírez, H., Silva-Navarro, G. (eds.) Algebraic Methods in Flatness, Signal Processing and State Estimation. Innovación ed. Lagares, México (2003)

  15. Fliess, M., Sira-Ramírez, H.: An algebraic framework for linear identification. In: ESAIM: COCV, vol. 9, pp. 151–168. SMAI (2003). http://www.esaim-cocv.org/

  16. Fliess, M., Sira Ramírez, H.: Control via state estimations of some nonlinear systems. In: Proc. Symp. Nonlinear Control Systems (NOLCOS’04). Stuttgart (2004). http://hal.inria.fr/inria-00001096

  17. Haykin, S., Van Veen, B.: Signals and Systems, 2nd edn. John Wiley & Sons (2002)

  18. Ibrir, S.: Online exact differentiation and notion of asymptotic algebraic observers. IEEE Trans. Automat. Contr. 48, 2055–2060 (2003)

    Article  MathSciNet  Google Scholar 

  19. Ibrir, S.: Linear time-derivatives trackers. Automatica 40, 397–405 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ibrir, S., Diop, S.: A numerical procedure for filtering and efficient high-order signal differentiation. Int. J. Appl. Math. Compt. Sci. 14, 201–208 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Ismail, M.E.H., Li, X.: Bound on the extreme zeros of orthogonal polynomials. Proceedings of the AMS 115(1), 131–140 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76, 924–941 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lorentz, G.G.: Bernstein Polynomials, 2nd edn. AMS Chelsea Publishing (1986)

  24. Massart, P.: Concentration inequalities and model selection. Lecture Notes in Mathematics, vol. 1896. Springer, Berlin (2007)

    Google Scholar 

  25. Mboup, M.: Parameter estimation via differential algebra and operational calculus. Tech. rep., Submitted to Signal Processing (2007)

  26. Mboup, M., Join, C., Fliess, M.: A revised look at numerical differentiation with an application to nonlinear feedback control. In: 15th Mediterranean conference on Control and automation (MED’07). Athenes, Greece (2007)

  27. Mikusiǹski, J.: Operational Calculus, vol. 1. PWN Varsovie & Oxford University Press, Oxford (1983)

    Google Scholar 

  28. Mikusiǹski, J., Boehme, T.K.: Operational Calculus, vol. 2. PWN Varsovie & Oxford University Press, Oxford (1987)

    Google Scholar 

  29. Rader, C.M., Jackson, L.B.: Approximating noncausal IIR digital filters having arbitrary poles, including new Hilbert transformer designs, via forward/backward block recursion. IEEE Trans. Circuits Syst. I 53(12), 2779–2787 (2006)

    Article  MathSciNet  Google Scholar 

  30. Richard, J.: Time delay systems: an overview of some recent advances and open problems. Automatica 10, 1667–1694 (2003)

    Article  MathSciNet  Google Scholar 

  31. Roberts, R.A., Mullis, C.T.: Digital Signal Processing. Addison-Wesley (1987)

    MATH  Google Scholar 

  32. Saitoh, S.: Theory of Reproducing Kernels and its Applications. Pitman Research Notes in Mathematics. Longman Scientic & Technical, UK (1988)

    Google Scholar 

  33. Seuret, A., Dambrine, M., Richard, J.: Robust exponential stabilization for systems with time-varying delays. In: 5th IFAC Workshop on Time Delay Systems. Leuven, Belgium (2004)

    Google Scholar 

  34. Su, Y.X., Zheng, C.H., Mueller, P.C., Duan, B.Y.: A simple improved velocity estimation for low-speed regions based on position measurements only. IEEE Trans. Control Syst. Technology 14, 937–942 (2006)

    Article  Google Scholar 

  35. Szegö, G.: Orthogonal Polynomials, 3rd edn. AMS, Providence, RI (1967)

    Google Scholar 

  36. Yosida, K.: Operational Calculus - A Theory of Hyperfunctions. Springer, New York (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou Mboup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mboup, M., Join, C. & Fliess, M. Numerical differentiation with annihilators in noisy environment. Numer Algor 50, 439–467 (2009). https://doi.org/10.1007/s11075-008-9236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9236-1

Keywords

Mathematics Subject Classifications (2000)

Navigation