Skip to main content
Log in

Review of inverse Laplace transform algorithms for Laplace-space numerical approaches

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A boundary element method (BEM) simulation is used to compare the efficiency of numerical inverse Laplace transform strategies, considering general requirements of Laplace-space numerical approaches. The two-dimensional BEM solution is used to solve the Laplace-transformed diffusion equation, producing a time-domain solution after a numerical Laplace transform inversion. Motivated by the needs of numerical methods posed in Laplace-transformed space, we compare five inverse Laplace transform algorithms and discuss implementation techniques to minimize the number of Laplace-space function evaluations. We investigate the ability to calculate a sequence of time domain values using the fewest Laplace-space model evaluations. We find Fourier-series based inversion algorithms work for common time behaviors, are the most robust with respect to free parameters, and allow for straightforward image function evaluation re-use across at least a log cycle of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, J., Valkó, P.: Multi-precision Laplace transform inversion. Int. J. Numer. Methods Eng. 60, 979–993 (2004). doi:10.1002/nme.995

    Article  MATH  Google Scholar 

  2. Al-Shuaibi, A.: Inversion of the Laplace transform via Post-Widder formula. Integral Transforms Spec. Funct. 11(3), 225–232 (2001). doi:10.1080/10652460108819314

    Article  MathSciNet  MATH  Google Scholar 

  3. Antia, H.: Numerical Methods for Scientists and Engineers, 2nd edn. Birkhäuser, Cambridge, MA (2002)

    Google Scholar 

  4. Bailey, D.H., Hida, Y., Li, X.S., Thompson, B.: ARPREC: An Arbitrary Precision Computation Package. Tech. Rep. LBNL-53651, Lawrence Berkley National Lab (2002)

  5. Bakker, M., Kuhlman, K.: Computational issues and applications of line-elements to model subsurface flow governed by the modified Helmholtz equation. Adv. Water Resour. (2011). doi:10.1016/j.advwatres.2011.02.008

    Google Scholar 

  6. Barnhart, K.S., Illangasekare, T.H.: Automatic transport model data assimilation in Laplace space. Water Resour. Res. 48, W01510, 12 (2012). doi:10.1029/2011WR010955

    Article  Google Scholar 

  7. Bellman, R., Kalaba, R.E., Lockett, J.A.: Numerical Inversion of the Laplace Transform: Applications to Biology, Economics, Engineering, and Physics. Elsevier, Amsterdam, The Netherlands; New York (1966)

    MATH  Google Scholar 

  8. Brebbia, C., Telles, J., Wrobel, L.: Boundary Element Techniques: Theory and Practice in Engineering. Springer, Berlin Heidelberg New York (1984)

    Book  Google Scholar 

  9. Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer, Berlin Heidelberg New York (2007)

    MATH  Google Scholar 

  10. Davies, A., Crann, D.: Parallel Laplace transform methods for boundary element solutions to diffusion-type problems. J. Boundary Elements BETEQ 2001(1), 231–238 (2002)

    Google Scholar 

  11. Davies, B.: Integral Transforms and their Applications, 3rd edn. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  12. Davies, B., Martin, B.: Numerical inversion of the Laplace transform: a survey and comparison of methods. J. Comput. Phys. 33, 1–32 (1979). doi:10.1016/0021-9991(79)90025-1

    Article  MathSciNet  MATH  Google Scholar 

  13. de Hoog, F., Knight, J., Stokes, A.: An improved method for numerical inversion of Laplace transforms. SIAM J. Sci. Statist. Comput. 3, 357–366 (1982). doi:10.1137/0903022

    Article  MathSciNet  MATH  Google Scholar 

  14. Duffy, D.G.: On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications. ACM Trans. Math. Softw. 19(3), 333–359 (1993). doi:10.1145/155743.155788

    Article  MathSciNet  MATH  Google Scholar 

  15. Duffy, D.G.: Transform Methods for Solving Partial Differential Equations. CRC Press, Boca Raton, FL (2004)

    Book  MATH  Google Scholar 

  16. Hantush, M.: Modification of the theory of leaky aquifers. J. Geophys. Res. 65(11), 3713–3725 (1960). doi:10.1029/JZ065i011p03713

    Article  Google Scholar 

  17. Johansson, F.: mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.17). http://code.google.com/p/mpmath/ (2011). Accessed Dec 2011

  18. Kano, P.O., Brio, M., Moloney, J.V.: Application of the Weeks method for the numerical inversion of the Laplace transform to the matrix exponential. Communications in Mathematical Sciences 3(3), 335–372 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Kuhlman, K.L., Neuman, S.P.: Laplace-transform analytic-element method for transient porous-media flow. J. Eng. Math. 64(2), 113–130 (2009). doi:10.1007/s10665-008-9251-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Kythe, P.K.: An Introduction to Boundary Element Methods. CRC Press, Boca Raton, FL (1995)

    MATH  Google Scholar 

  21. Lanczos, C.: Applied Analysis. Dover, New York (1988)

    Google Scholar 

  22. Liggett, J.A., Liu, P.L.: The Boundary Integral Equation Method for Porous Media Flow. Unwin, London, UK (1982)

    Google Scholar 

  23. Lyness, J., Giunta, G.: A modification of the Weeks method for numerical inversion of the Laplace transform. Math. Comput. 47(175), 313–322 (1986). doi:10.2307/2008097

    Article  MathSciNet  MATH  Google Scholar 

  24. Malama, B., Kuhlman, K., Revil, A.: Theory of transient streaming potentials associated with axial-symmetric flow in unconfined aquifers. Geophys. J. Int. 179(2), 990–1003 (2009). doi:10.1111/j.1365-246X.2009.04336.x

    Article  Google Scholar 

  25. Mishra, P.K., Neuman, S.P.: Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer. Water Resour. Res. 46(7), W07508, 16 (2010). doi:10.1029/2009WR008899

    Article  Google Scholar 

  26. Morales-Casique, E., Neuman, S.P.: Laplace-transform finite element solution of nonlocal and localized stochastic moment equations of transport. Commun. Comput. Phys. 6(1), 131–161 (2009)

    Article  MathSciNet  Google Scholar 

  27. Oliphant, T.E.: Python for scientific computing. Comput. Sci. Eng. 9(3), 10–20 (2007). doi:10.1109/MCSE.2007.58

    Article  Google Scholar 

  28. Piessens, R.: A new numerical method for the inversion of the Laplace transform. J. Inst. Math. Appl. 10, 185–192 (1972). doi:10.1093/imamat/10.2.185

    Article  MATH  Google Scholar 

  29. Schapery, R.: Approximate methods of transform inversion for visco-elastic stress analysis. In: Proceedings of the Fourth US National Congress on Applied Mechanics, vol. 2, pp. 1075–1085 (1962)

  30. Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms. Commun. ACM 13(1), 47–49 (1970). doi:10.1145/361953.361969

    Article  Google Scholar 

  31. Sternberg, Y.: Flow to wells in the presence of radial discontinuities. Ground Water 7(6), 17–20 (1969). doi:10.1111/j.1745-6584.1969.tb01666.x

    Article  Google Scholar 

  32. Sudicky, E., McLaren, R.: The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour. Res. 28(2), 499–514 (1992). doi:10.1029/91WR02560

    Article  Google Scholar 

  33. Talbot, A.: The accurate numerical inversion of Laplace transforms. IMA J. Appl. Math. 23(1), 97 (1979). doi:10.1093/imamat/23.1.97

    Article  MathSciNet  MATH  Google Scholar 

  34. Weeks, W.: Numerical inversion of Laplace transforms using Laguerre functions. J. ACM 13(3), 419–429 (1966). doi:10.1145/321341.321351

    Article  MathSciNet  MATH  Google Scholar 

  35. Weideman, J.: Algorithms for parameter selection in the Weeks method for inverting the Laplace transform. SIAM J. Sci. Comput. 21(1), 111–128 (1999). doi:10.1137/S1064827596312432

    Article  MathSciNet  MATH  Google Scholar 

  36. Widder, D.: The Laplace Transform. Princeton University Press, Princeton, NJ (1941)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristopher L. Kuhlman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhlman, K.L. Review of inverse Laplace transform algorithms for Laplace-space numerical approaches. Numer Algor 63, 339–355 (2013). https://doi.org/10.1007/s11075-012-9625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9625-3

Keywords

Navigation