Skip to main content
Log in

A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A fourth-order implicit-explicit time-discretization scheme based on the exponential time differencing approach with a fourth-order compact scheme in space is proposed for space fractional nonlinear Schrödinger equations. The stability and convergence of the compact scheme are discussed. It is shown that the compact scheme is fourth-order convergent in space and in time. Numerical experiments are performed on single and coupled systems of two and four fractional nonlinear Schrödinger equations. The results demonstrate accuracy, efficiency, and reliability of the scheme. A linearly implicit conservative method with the fourth-order compact scheme in space is also considered and used on the system of space fractional nonlinear Schrödinger equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benney, D.J., Newll, A.C.: The propagation of nonlinear wave envelops. J. Math. Phys. 46, 133–139 (1967)

    Article  MathSciNet  Google Scholar 

  3. Berland, H., Owren, B., Skaflestad, B.: Solving the nonlinear Schrödinger equation using exponential integrators. Model. Ident. Control 27, 201–218 (2006)

    Article  Google Scholar 

  4. Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147, 362–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, H.F., Li, C.P., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (I). Abstr. Appl. Anal., Article ID 653797 (2014)

  7. Ding, H., Zhang, Y.: A new difference scheme with high accuracy and absolute stability for solving convection-diffusion equations. J. Comput. Appl. Math. 230, 600–606 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fellah, Z.E.A., Depollier, C.: Application of fractional calculus to the sound waves propagation in rigid porous materials: Validation via ultrasonic measurement. Acta. Acustica 88, 34–39 (2002)

    Google Scholar 

  9. Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204, 468–77 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Garrappa, R., Popolizio, M.: Generalized exponential time differencing methods for fractional order problems. Comput. Math. Appl. 62, 876–890 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hederi, M., Islas, A.L., Reger, K., Schober, C.M.: Efficiency of exponential time differencing schemes for nonlinear Schrödinger equations. Math. Comput. Simul. 127, 101–113 (2013)

    Article  Google Scholar 

  12. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  13. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta. Numerica, 209–286 (2010)

  14. Hu, J., Xin, J., Lu, H.: The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition. Comput. Math. Appl. 62, 1510–1521 (2011)

  15. Ionescu, A.D., Pusateri, F.: Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal. 266, 139–176 (2012)

    Article  MATH  Google Scholar 

  16. Ismail, M.S.: A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation. Appl. Math. Comput. 196, 273–284 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Jia, J., Wang, H.: Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. J. Comput. Phys. 293, 359–369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khaliq, A.Q.M., Martin-Vaquero, J., Wade, B.A., Yousuf, M.: Smoothing schemes for reaction-diffusion systems with non-smooth data. J. Comput. Appl. Math. 223, 374–386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang, X., Khaliq, A.Q.M., Xing, Y.: Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations. Commun. Comput. Phys. 17, 510–541 (2015)

    Article  MathSciNet  Google Scholar 

  20. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci., 1–12 (2006)

  21. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y., Jara, B.M.V.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228, 3137–3153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Popolizio, M.: A matrix approach for partial differential equations with Riesz space fractional derivatives. Eur. Phys. J. Special Topics 222, 1975–1985 (2013)

    Article  Google Scholar 

  24. Salmi, S., Toivanen, J., Von Sydow, L.: An IMEX-scheme for pricing options under stochastic volatility models with jumps. SIAM J. Sci. Comput. 36, 817–834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, J., Qin, M.: Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system. Comput. Phys. Commun. 155, 221–235 (2003)

    Article  MATH  Google Scholar 

  26. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles,Fields and Media. Higher Education Press and Springer (2010)

  27. Wang, P., Huang, C.: A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation. Numer. Algor. 69, 625–641 (2015)

    Article  MATH  Google Scholar 

  28. Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644–655 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model 34, 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yousuf, M., Khaliq, A.Q.M., Kleefeld, B.: The numerical approximation of nonlinear Black-scholes model for exotic path-dependent American options with transaction cost. Int. J. Comput. Math. 89, 1239–1254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Q. M. Khaliq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M. Khaliq, A.Q., Liang, X. & Furati, K.M. A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations. Numer Algor 75, 147–172 (2017). https://doi.org/10.1007/s11075-016-0200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0200-1

Keywords

Navigation