Skip to main content
Log in

Circulant preconditioners for a kind of spatial fractional diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, circulant preconditioners are studied for discretized matrices arising from finite difference schemes for a kind of spatial fractional diffusion equations. The fractional differential operator is comprised of left-sided and right-sided derivatives with order in \((\frac {1}{2},1)\). The resulting discretized matrices preserve Toeplitz-like structure and hence their matrix-vector multiplications can be computed efficiently by the fast Fourier transform. Theoretically, the spectra of the circulant preconditioned matrices are shown to be clustered around 1 under some conditions. Numerical experiments are presented to demonstrate that the preconditioning technique is very efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson, D., Schumer, R., Meerschaert, M., Wheatcraft, S.: Fractional dispersion, lévy motion, and the MADE tracer tests. Transp. Porous Med. 42, 211–240 (2001)

    Article  Google Scholar 

  2. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, R., Strang, G.: Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Statist. Comput. 10, 104–119 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, T.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Statist. Comput. 9, 766–771 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 33, 256–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciesielski, M., Klimek, M., Blaszczyk, T.: The fractional Sturm-Liouville problem-Numerical approximation and application in fractional diffusion. J. Comput. Appl. Math. 317, 573–588 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gu, X., Huang, T., Ji, C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Comput. Phys. 72, 957–985 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Gu, X., Huang, T., Zhao, X., Li, H., Li, L.: Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. J. Comput. Appl. Math. 277, 73–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  12. Jin, X.: Preconditioning Techniques for Teoplitz Systems. Higher Education Press, Beijing (2010)

    Google Scholar 

  13. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comp. 84, 2665–2700 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52, 2272–2294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  16. Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403, 524–526 (2000)

    Article  Google Scholar 

  17. Klimek, M., Agrawal, O.P.: Fractional Sturm-Liouville problem. Comput. Math. Appl. 66, 795–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Langlands, T., Henry, B.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lei, S., Sun, H.: A circulant preconditioner for fractional diffusion equations. J. Sci. Comput. 242, 715–725 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Li, M., Gu, X., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commum. Comput. Phys. 8, 1016–1051 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equations. J. Comput. Phys. 256, 109–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, X., Ng, M., Sun, H.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM Matrix Anal. & Appl. 38, 1580–1614 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lynch, V., Carreras, B., Castillo-Negrete, D., Ferreira-Mejias, K., Hicks, H.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–421 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Magin, R.L.: Fractional Calculus in Bioengineering. Redding, Begell House (2006)

    Google Scholar 

  26. Mao, Z., Shen, J.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243–261 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ng, M.: Iterative Methods for Toeplitz Systems. Numerical mathematics and scientific computation. Oxford University Press, New York (2004)

    Google Scholar 

  30. Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pan, J., Ng, M., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pang, H., Sun, H.: Fast numerical Contour integral method for fractional diffusion equations. J. Sci. Comput. 66, 41–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  35. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A 314, 749–755 (2002)

    Article  MATH  Google Scholar 

  36. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tadjeran, C., Meerchaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, H., Wang, K.: An \(\mathcal {O}(N \log ^{2}n)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, H., Wang, K., Sircar, T.: A direct \(\mathcal {O}(n\log ^{2} N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wheatcraft, S.W., Meerchaert, M.M.: Fractional conservation of mass. Adv. Water Resour. 31, 1377–1381 (2008)

    Article  Google Scholar 

  42. Xu, Y., Sun, H., Sheng, Q.: On variational properties of balanced central fractional derivatives. Int. J. Comput. Math. 95, 1195–1209 (2018)

    Article  MathSciNet  Google Scholar 

  43. Zhang, L., Sun, H., Pang, H.: Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J. Comput. Phys. 299, 130–143 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wei Sun.

Additional information

The research is supported in part by research grants 0118/2018/A3 from FDCT of Macao, MYRG2016-00063-FST from University of Macau, HKRGC GRF 12302715, 12306616, 12200317 and 12300218, and HKBU RC-ICRS/16-17/03.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, ZW., Ng, M.K. & Sun, HW. Circulant preconditioners for a kind of spatial fractional diffusion equations. Numer Algor 82, 729–747 (2019). https://doi.org/10.1007/s11075-018-0623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0623-y

Keywords

Mathematics Subject Classification (2010)

Navigation