Skip to main content
Log in

A heuristic for optimizing stochastic activity networks with applications to statistical digital circuit sizing

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

A deterministic activity network (DAN) is a collection of activities, each with some duration, along with a set of precedence constraints, which specify that activities begin only when certain others have finished. One critical performance measure for an activity network is its makespan, which is the minimum time required to complete all activities. In a stochastic activity network (SAN), the durations of the activities and the makespan are random variables. The analysis of SANs is quite involved, but can be carried out numerically by Monte Carlo analysis.

This paper concerns the optimization of a SAN, i.e., the choice of some design variables that affect the probability distributions of the activity durations. We concentrate on the problem of minimizing a quantile (e.g., 95%) of the makespan, subject to constraints on the variables. This problem has many applications, ranging from project management to digital integrated circuit (IC) sizing (the latter being our motivation). While there are effective methods for optimizing DANs, the SAN optimization problem is much more difficult; the few existing methods cannot handle large-scale problems.

In this paper we introduce a heuristic method for approximately optimizing a SAN, by forming a related DAN optimization problem which includes extra margins in each of the activity durations to account for the variation. Since the method is based on optimizing a DAN, it readily handles large-scale problems. To assess the quality of the resulting suboptimal designs, we describe two widely applicable lower bounds on achievable performance in optimal SAN design.

We demonstrate the method on a simplified statistical digital circuit sizing problem, in which the device widths affect both the mean and variance of the gate delays. Numerical experiments show that the resulting design is often substantially better than one in which the variation in delay is ignored, and is often quite close to the global optimum (as verified by the lower bounds).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Malek H, Bandler J (1980a) Yield optimization for arbitrary statistical distributions: part I—theory. IEEE Trans Circuits Syst 27(4):245–253

    Article  MATH  Google Scholar 

  • Abdel-Malek H, Bandler J (1980b) Yield optimization for arbitrary statistical distributions: part II—implementation. IEEE Trans Circuits Syst 27(4):253–262

    Article  MATH  Google Scholar 

  • Abramowitz M, Stegun I (eds) (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Wiley, New York

    MATH  Google Scholar 

  • Agarwal A, Zolotov V, Blaauw D (2003) Statistical timing analysis using bounds and selective enumeration. IEEE Trans Comput Aided Des Integr Circuits Syst 22(9):1243–1260

    Article  Google Scholar 

  • Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805

    MATH  MathSciNet  Google Scholar 

  • Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization. Analysis, algorithms, and engineering applications. SIAM, Philadelphia

    MATH  Google Scholar 

  • Bertsekas D (1999) Nonlinear programming, 2nd edn. Athena Scientific

  • Bertsekas D, Nedic A, Ozdaglar A (2003) Convex analysis and optimization. Athena Scientific

  • Bertsimas D, Thiele A (2006) A robust optimization approach to supply chain management. Math Program Ser B 54(1):150–168

    MathSciNet  Google Scholar 

  • Bertsimas D, Natarajan K, Teo C-P (2004) Probabilistic combinatorial optimization: Moments, semidefinite programming and asymptotic bounds. SIAM J Optim 15(1):185–209

    Article  MATH  MathSciNet  Google Scholar 

  • Bhardwaj S, Vrudhula S, Blaauw D (2003) TAU: timing analysis under uncertainty. In: International conference on computer-aided design, San Jose, pp 615–620, November 2003

  • Birge J, Maddox M (1995) Bounds on expected project tardiness. Oper Res 43:838–850

    MATH  Google Scholar 

  • Bowman R (1995) Efficient estimation of arc criticalities in stochastic activity networks. Manag Sci 41(1):58–67

    MATH  MathSciNet  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Boyd S, Kim S-J, Patil D, Horowitz M (2005) Digital circuit optimization via geometric programming. Oper Res 53(6):899–932

    Article  MathSciNet  Google Scholar 

  • Boyd S, Kim S-J, Vandenberghe L, Hassibi A (2007) A tutorial on geometric programming. Optim Eng (to appear). Available from www.stanford.edu/boyd/~gp_tutorial.html

  • Bozorgzadeh E, Ghiasi S, Takahashi A, Sarrafzadeh M (2004) Optimal integer delay budget assignment on directed acyclic graphs. IEEE Trans Comput Aided Des Integr Circuits Syst 23(8):1184–1199

    Article  Google Scholar 

  • Burt J, Garman M (1971) Conditional Monte Carlo: A simulation technique for stochastic network analysis. Manag Sci 18(1):207–217

    MATH  Google Scholar 

  • Charnes A, Cooper W, Thompson G (1964) Critical path analyses via chance constrained and stochastic programming. Oper Res 12:460–470

    MATH  MathSciNet  Google Scholar 

  • Conn A, Gould N, Toint PhL (1992) LANCELOT: a Fortran package for large-scale nonlinear optimization (release A). Springer series in computational mathematics, vol 17. Springer, Berlin

    MATH  Google Scholar 

  • Conn A, Coulman P, Haring R, Morrill G, Visweswariah C, Wu C (1998) JiffyTune: Circuit optimization using time-domain sensitivities. IEEE Trans Comput Aided Des Integr Circuits Syst 17(12):1292–1309

    Article  Google Scholar 

  • Davis E (1966) Resource allocation in project network models—a survey. J Ind Eng 17(4):177–187

    Google Scholar 

  • Devroye L (1979) Inequalities for the completion times of stochastic PERT networks. Math Oper Res 4(4):441–447

    MATH  MathSciNet  Google Scholar 

  • Dodin B (1984) Determining the k most critical paths in PERT networks. Oper Res 32:859–877

    MATH  MathSciNet  Google Scholar 

  • Dodin B (1985) Bounding the project completion time distribution in PERT networks. Oper Res 33:862–881

    MATH  Google Scholar 

  • Dodin B, Elmaghraby S (1985) Approximating the criticality indices of the activities in PERT networks. Manag Sci 31(2):207–223

    MATH  MathSciNet  Google Scholar 

  • Elmaghraby S (1977) Project planning and control by network models. Wiley, New York

    MATH  Google Scholar 

  • Eppstein D (1998) Finding the k shortest paths. SIAM J Comput 28(2):652–673

    Article  MATH  MathSciNet  Google Scholar 

  • Esary J, Proschan F, Walkup D (1967) Association of random variables with applications. Ann Math Stat 38:71466–1474

    MathSciNet  Google Scholar 

  • Fishburn J, Dunlop A (1985) TILOS: A posynomial programming approach to transistor sizing. In: IEEE international conference on computer-aided design: ICCAD-85. Digest of technical papers, IEEE Computer Society Press, pp 326–328

  • Fox B (1994) Integrating and accelerating tabu search. Ann Oper Res 41:47–67

    Article  Google Scholar 

  • El Ghaoui L, Lebret H (1997) Robust solutions to least-squares problems with uncertain data. SIAM J Matrix Anal Appl 18(4):1035–1064

    Article  MATH  MathSciNet  Google Scholar 

  • Glasserman P (2003) Monte Carlo methods in financial engineering. Springer, Berlin

    Google Scholar 

  • Hagstrom J, Jane N (1990) Computing the probability distribution of project duration in a PERT network. Networks 20:231–244

    Article  MATH  MathSciNet  Google Scholar 

  • Heller U (1981) On the shortest overall duration in stochastic acyclic network. Methods Oper Res 42:85–104

    MATH  Google Scholar 

  • Hongliang C, Sapatnekar S (2003) Statistical timing analysis considering spatial correlations using a single PERT-like traversal. In: International conference on computer-aided design, San Jose, pp 621–625, November 2003

  • Hsiung K-L, Kim S-J, Boyd S (2005) Robust geometric programming via piecewise linear approximation. Manuscript, September 2005

  • Jess J, Kalafala K, Naidu S, Otten R, Visweswariah C (2003) Statistical timing for parametric yield prediction of digital integrated circuits. In: Proc. of 40th proc. IEEE/ACM design automation conference, Anaheim, pp 343–347, June 2003

  • Knowles S (1999) A family of adders. In: Proceedings of 14th IEEE symposium on computer arithmetic, IEEE Computer Society Press, pp 30–34

  • Liou J-J, Krstić A, Jiang Y-M, Cheng K-T (2003) Modeling, testing, and analysis for delay defects and noise effects in deep submicron devices. IEEE Trans Comput Aided Des Integr Circuits Syst 22(6):756–769

    Article  Google Scholar 

  • Ludwig A, Möhring R, Stork F (2001) A computational study on bounding the makespan distribution in stochastic project networks. Ann Oper Res 102:49–64

    Article  MATH  MathSciNet  Google Scholar 

  • Ma S, Keshavarzi A, De V, Brews R (2004) A statistical model for extracting geometric sources of transistor performance variation. IEEE Trans Electron Dev 51(1):36–41

    Article  Google Scholar 

  • Mejilson I, Nadas A (1979) Convex majorization with an application to the length of critical path. J Appl Probab 16:671–677

    Article  MathSciNet  Google Scholar 

  • Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for the resource constrained project scheduling problem based on a new mathematical formulation. Manag Sci 44:714–729

    MATH  Google Scholar 

  • MOSEK ApS (2002). The MOSEK optimization tools version 2.5. User’s manual and reference. Available from www.mosek.com

  • Mutapcic A, Koh K, Kim S-J, Vandenberghe L, Boyd S (2005) GGPLAB: a simple matlab toolbox for geometric programming. Available from www.stanford.edu/~boyd/ggplab/

  • Nesterov Y (2003) Introductory lectures on convex optimization: a basic course. Kluwer Academic, Boston

    Google Scholar 

  • Nesterov Y, Nemirovsky A (1994) Interior-point polynomial methods in convex programming. Studies in applied mathematics, vol 13. SIAM, Philadelphia

    Google Scholar 

  • Neumaier A (1998) Solving ill-conditioned and singular linear systems: A tutorial on regularization. SIAM Rev 40(3):636–666

    Article  MATH  MathSciNet  Google Scholar 

  • Nocedal J, Wright S (1999) Numerical optimization. Springer series in operations research. Springer, New York

    Google Scholar 

  • Okada K, Yamaoka K, Onodera H (2003) A statistical gate delay model for intra-chip and inter-chip variabilities. In: Proc. of 40th IEEE/ACM proc. design automation conference, Anaheim, pp 31–36, June 2003

  • Orshansky M, Keutzer K (2002) A general probabilistic framework for worst case timing analysis. In: Proc. of 39th IEEE/ACM design automation conference, New Orleans, pp 556–561, June 2002

  • Orshansky M, Chen J, Hu C (1999) Direct sampling methodology for statistical analysis of scaled CMOS technologies. IEEE Trans Semicond Manuf 12(4):403–408

    Article  Google Scholar 

  • Orshansky M, Milor L, Chen P, Keutzer K, Hu C (2002) Impact of spatial intrachip gate length variability on the performance of high-speed digital circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 21(5):544–553

    Article  Google Scholar 

  • Orshansky M, Milor L, Hu C (2004) Characterization of spatial intrafield gate CD variability, its impact on circuit performance and spatial mask-level correction. IEEE Trans Semicond Manuf 17(1):2–11

    Article  Google Scholar 

  • Patil D, Yun Y, Kim S-J, Boyd S, Horowitz M (2004) A new method for robust design of digital circuits. In: Proceedings of the sixth international symposium on quality electronic design (ISQED) 2005, IEEE Computer Society Press, pp 676–681

  • Pelgrom M (1989) Matching properties of MOS transistors. IEEE J Solid State Circuits 24(5):1433–1439

    Article  Google Scholar 

  • Pich M, Loch C, De Meyer A (2002) On uncertainty, ambiguity, and complexity in project management. Manag Sci 48(8):1008–1023

    Article  Google Scholar 

  • Plambeck E, Fu B-R, Robinson S, Suri R (1996) Sample-path optimization of convex stochastic performance functions. Math Program 75(2):137–176

    Article  MathSciNet  Google Scholar 

  • Pollalis S (1993) Computer-aided project management: a visual scheduling and control system. Vieweg Verlag, Wiesbaden

    MATH  Google Scholar 

  • Prekopa A (1983) Stochastic programming. Kluwer Academic, Dordrecht

    Google Scholar 

  • Robillard P, Trahan M (1976) The completion times of PERT networks. Oper Res 25:15–29

    MathSciNet  Google Scholar 

  • Robinson J (1979) Some analysis techniques for asynchronous multiprocessor algorithms. IEEE Trans Softw Eng 5(1):24–31

    Article  Google Scholar 

  • Rockafellar R, Uryasev S (2000) Optimization of conditional value-at-risk criterion. J Risk 2(3):21–41

    Google Scholar 

  • Sapatnekar S (1996) Wire sizing as a convex optimization problem: exploring the area-delay tradeoff. IEEE Trans Comput Aided Des 15:1001–1011

    Article  Google Scholar 

  • Sapatnekar S (2000) Power-delay optimization in gate sizing. ACM Trans Des Autom Electron Syst 5(1):98–114

    Article  Google Scholar 

  • Sapatnekar S, Rao V, Vaidya P, Kang S (1993) An exact solution to the transistor sizing problem for CMOS circuits using convex optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 12(11):1621–1634

    Article  Google Scholar 

  • Serfling R (1980) Approximation theorems of mathematical statistics. Wiley, New York

    MATH  Google Scholar 

  • Shogan A (1977) Bounding distributions for a stochastic PERT network. Networks 7:359–381

    Article  MATH  MathSciNet  Google Scholar 

  • Slowinski R (1980) Two approaches to problems of resource allocation among project activities: a comparative study. J Oper Res Soc 31:711–723

    MATH  MathSciNet  Google Scholar 

  • Van Slyke R (1963) Monte Carlo methods and the PERT problem. Oper Res 11:839–860

    Google Scholar 

  • Van Slyke R, Wets R (1969) L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J Appl Math 17:638–663

    Article  MATH  MathSciNet  Google Scholar 

  • Styblinski M, Opalski L (1986) Algorithms and software tools for IC yield optimization based on fundamental fabrication parameters. IEEE Trans Comput Aided Des 5(1):79–89

    Article  Google Scholar 

  • Sullivan R, Hayya J (1980) A comparison of the method of bounding distributions (MBD) and Monte Carlo simulation for analyzing stochastic acyclic networks. Oper Res 28(3):614–617

    MathSciNet  Google Scholar 

  • Sutherland I, Sproul B, Harris D (1999) Logical effort: designing fast CMOS circuits. Kaufmann, San Francisco

    Google Scholar 

  • van der Vaart A (1998) Asymptotics statistics. Cambridge University Press, Cambridge

    Google Scholar 

  • Vanderbei R (1992) LOQO user’s manual. Technical Report SOL 92–05, Dept. of Civil Engineering and Operations Research, Princeton University, Princeton, NJ 08544, USA

  • Visweswariah C (2003) Death, taxes and failing chips. In: Proc. of 40th IEEE/ACM design automation conference, Anaheim, pp 343–347, June 2003

  • Wallace S (1989) Bounding the expected time-cost curve for a stochastic PERT network from below. Oper Res 8:89–94

    MATH  MathSciNet  Google Scholar 

  • Weiss G (1986) Stochastic bounds on distributions of optimal value functions with applications to PERT, network flows and reliability. Oper Res 34(4):595–605

    Article  MATH  MathSciNet  Google Scholar 

  • White K, Trybula W, Athay R (1997) Design for semiconductor manufacturing-perspective. IEEE Trans Compon Packag Manuf Technol Part C 20(1):58–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Jean Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Boyd, S.P., Yun, S. et al. A heuristic for optimizing stochastic activity networks with applications to statistical digital circuit sizing. Optim Eng 8, 397–430 (2007). https://doi.org/10.1007/s11081-007-9011-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-007-9011-5

Keywords

Navigation