Skip to main content
Log in

Designing polymer spin packs by tailored shape optimization techniques

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We consider optimal shape design problems for polymer spin packs which are widely used in the production of synthetic fibers and nonwoven materials. The design goal is the minimization of the residence time of the polymer, which can be achieved by adjusting the wall shear stress along the boundary. Depending on the specific industrial setting we construct two tailored algorithms. First, we consider the design in three spatial dimensions based on a PDE constrained shape optimization problem. Here, the constraint is given by the Stokes flow. Second, we change the design goal and want to construct shapes in two spatial dimensions which allow for a lower bound on the wall shear stress. This can be incorporated as an additional state constraint. By relaxing this condition and employing the method of mapping we can pull-back the problem onto a fixed reference domain. We get an elegant formulation of this state constrained optimization problem, in which geometric constraints on the boundary can also be included. After discretization we end up with a large-scale NLP which can be handled by existing solvers. Finally, we present numerical results underlining the feasibility of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Balesdent M, Bérend N, Dépincé P, Chriette A (2012) A survey of multidisciplinary design optimization methods in launch vehicle design. Struct Multidiscip Optim 45(5):619–642. https://doi.org/10.1007/s00158-011-0701-4

    Article  MathSciNet  MATH  Google Scholar 

  • Blair DE (2000) Inversion theory and conformal mapping, vol 9. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Chenais D, Zuazua E (2003) Controllability of an elliptic equation and its finite difference approximation by the shape of the domain. Numer Math 95(1):63–99

    Article  MathSciNet  MATH  Google Scholar 

  • Desbrun M, Meyer M, Schröder P, Barr A (1999) Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., pp 317–324

  • Echeverrĭa D, Hemker PW (2005) Space mapping and defect correction. Comput. Methods. Appl. Math. 5(2):107–136

    MathSciNet  MATH  Google Scholar 

  • Ern A, Guermond J (2004) Theory and practice of finite elements, vol 159. Springer, Berlin

    MATH  Google Scholar 

  • Feßler R, Hietel D, Leithäuser C (2016) Simulation-based analysis and optimization of polymer spin packs. Chem Fibers Int 66(3):137–138

    Google Scholar 

  • Frey M (2012) Shape calculus applied to state-constrained elliptic optimal control problems. Ph.D. Thesis, Uni Bayreuth

  • Garcke H, Hinze M, Kahle C, Lam KF (2017) A phase field approach to shape optimization in Navier–Stokes flow with integral state constraint. arXiv preprint arXiv:1702.03855

  • Girault V, Raviart PA (2012) Finite element methods for Navier–Stokes equations: theory and algorithms, vol 5. Springer, Berlin

    MATH  Google Scholar 

  • Grund T, Rösch A (2001) Optimal control of a linear elliptic equation with a supremum norm functional. Optim Methods Softw 15(3–4):299–329

    Article  MathSciNet  MATH  Google Scholar 

  • Hecht F (2012) New development in freefem++. J Numer Math 20(3–4):251–265

    MathSciNet  MATH  Google Scholar 

  • Heinemann C, Sturm K (2016) Shape optimization for a class of semilinear variational inequalities with applications to damage models. SIAM J Math Anal 48(5):3579–3617

    Article  MathSciNet  MATH  Google Scholar 

  • Henrici P (1993) Applied and computational complex analysis, discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, vol 3. Wiley, Hoboken

    MATH  Google Scholar 

  • Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints, vol 23. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hiptmair R, Paganini A, Sargheini S (2015) Comparison of approximate shape gradients. BIT Numer Math 55(2):459–485

    Article  MathSciNet  MATH  Google Scholar 

  • Iglesias JA, Sturm K, Wechsung F (2017) Shape optimisation with nearly conformal transformations. arXiv preprint arXiv:1710.06496

  • Kennedy P, Zheng R (2013) Flow analysis of injection molds. Carl Hanser Verlag GmbH Co KG, Munich

    Book  Google Scholar 

  • Keuthen M, Ulbrich M (2015) Moreau–Yosida regularization in shape optimization with geometric constraints. Comput Optim Appl 62(1):181–216

    Article  MathSciNet  MATH  Google Scholar 

  • Koziel S, Leifsson L (2016) Introduction to surrogate modeling and surrogate-based optimization. In: Simulation-driven design by knowledge-based response correction techniques, vol 15. Springer, Cham, pp 31–61. https://doi.org/10.1007/978-3-319-30115-0_4

  • Kroon D (2012) Smooth triangulated mesh. http://www.mathworks.com/matlabcentral/fileexchange/26710-smooth-triangulated-mesh. Accessed Mar 2012

  • Laurain A, Sturm K (2016) Distributed shape derivative via averaged adjoint method and applications. ESAIM: Math Model Numer Anal 50(4):1241–1267

    Article  MathSciNet  MATH  Google Scholar 

  • Leithäuser C, Feßler R (2012) Characterizing the image space of a shape-dependent operator for a potential flow problem. Appl Math Lett 25:1959–1963

    Article  MathSciNet  MATH  Google Scholar 

  • Leithäuser C, Pinnau R, Feßler R (2017) Approximate controllability of linearized shape-dependent operators for flow problems. ESAIM: Control Optim Calc Var 23(3):751–771

    Article  MathSciNet  MATH  Google Scholar 

  • Mani K, Mavriplis DJ (2008) Unsteady discrete adjoint formulation for two-dimensional flow problems with deforming meshes. AIAA J 46(6):1351

    Article  Google Scholar 

  • Marburger J (2007) Space-mapping and optimal shape design. Diplomarbeit, TU Kaiserslautern

  • Marheineke N, Pinnau R (2012) Model hierarchies in space-mapping optimization: feasibility study for transport processes. J Comput Methods Sci Eng 12(1, 2):63–74

    MathSciNet  MATH  Google Scholar 

  • Marheineke N, Pinnau R, Reséndiz E (2012) Space mapping-focused control techniques for particle dispersions in fluids. Optim Eng 13(1):101–120

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadi B, Pironneau O (2001) Applied shape optimization for fluids. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Murat F, Simon J (1975) Etude de problèmes d’optimal design. In: IFIP technical conference on optimization techniques, Springer, pp 54–62

  • Murat F, Simon J (1976) Sur le contrôle par un domaine géométrique. Rapport LA 189, Univ Paris VI

  • Nield D, Bejan A (2006) Convection in porous media. Springer, Berlin

    MATH  Google Scholar 

  • Schinzinger R, Laura P (2003) Conformal mapping: methods and applications. Dover Publications, Ne]w York

    MATH  Google Scholar 

  • Schulz VH, Siebenborn M, Welker K (2015) PDE constrained shape optimization as optimization on shape manifolds. Springer, Cham, pp 499–508

    MATH  Google Scholar 

  • Schulz V, Siebenborn M, Welker K (2016) Efficient PDE constrained shape optimization based on Steklov–Poincaré-type metrics. SIAM J Optim 26:2800–2819

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolowski J, Zolesio J (1992) Introduction to shape optimization: shape sensitivity analysis, vol 16. Springer, Berlin

    MATH  Google Scholar 

  • Stewart I, Tall D (1983) Complex analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Sturm K (2015) Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption. SIAM J Control Optim 53(4):2017–2039

    Article  MathSciNet  MATH  Google Scholar 

  • Sturm K (2016) Shape optimization with nonsmooth cost functions: from theory to numerics. SIAM J Control Optim 54(6):3319–3346

    Article  MathSciNet  MATH  Google Scholar 

  • Tavoularis S (2005) Measurement in fluid mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Temam R (1984) Navier–Stokes equations, vol 2. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Vanderbei R, Shanno D (1999) An interior-point algorithm for nonconvex nonlinear programming. Comput Optim Appl 13(1):231–252

    Article  MathSciNet  MATH  Google Scholar 

  • Wloka J (1982) Partielle Differentialgleichungen. Teubner, Chichester

    Book  MATH  Google Scholar 

  • Zahr MJ, Persson PO (2016) An adjoint method for a high-order discretization of deforming domain conservation laws for optimization of flow problems. J Comput Phys 326:516–543

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Pinnau.

Additional information

This work was supported by the German Federal Ministry of Education and Research (BMBF) Grant No. 03MS606F.

Appendices

Appendix 1: Wall shear stress

The WSS defined in (3) agrees with the classical definition (Tavoularis 2005, eq. 14.1). To see this, let \(\mathbf{x} \in \varGamma^{\text{wall}}\) and assume w.l.o.g that \(\mathbf{x}\) is the center of the coordinate system and that \(\mathbf{n}(\mathbf{x}) = (0, 0, 1)^\intercal\) holds. Then

$$\begin{aligned} \sigma (\mathbf{x}) = \eta \left| \nabla \times \mathbf{u} \right| (\mathbf{x}) = \eta \left| \begin{pmatrix} \partial _2 u_3 - \partial _3 u_2\\ \partial _3 u_1 - \partial _1 u_3\\ \partial _1 u_2 - \partial _2 u_1 \end{pmatrix} \right| (x) = \eta \left| \begin{pmatrix} - \partial _3 u_2\\ \partial _3 u_1\\ 0 \end{pmatrix} \right| (x), \end{aligned}$$

where \(\partial _1 u_2 = \partial _1 u_3 = \partial _2 u_1 = \partial _2 u_3 = 0\) are derivatives in tangential direction at the boundary where \(\mathbf{u} = 0\) holds and thus vanish. Furthermore, w.l.o.g the coordinate system can be rotated around the third axis, i.e., the normal, such that \(\partial _3 u_2\) vanishes. This yields the classical formulation of the WSS (Tavoularis 2005, eq. 14.1)

$$\begin{aligned} \sigma (\mathbf{x}) = \eta \left| \partial _3 u_1 \right| (\mathbf{x}). \end{aligned}$$

Appendix 2: Weak formulation of the 3D Stokes problem

We provide the weak form of (1) which is used to solve the problem numerically. Our outflow boundary condition agrees with (Ern and Guermond 2004, Eq. 4.11c). The following weak form of (1) relies on the identity \(\Delta \mathbf{u} = \nabla ({{\mathrm{div}}}\, \mathbf{u}) - \nabla \times \nabla \times \mathbf{u}\) and is derived in (Ern and Guermond 2004, Eq. 4.12):

$$\begin{aligned} &{\text{Find }}\,\mathbf{u} \in X:= \{\mathbf{u} \in [H^1(\varOmega )]^3; \;\mathbf{u}|_{\varGamma^{\text{in}} \cup \varGamma^{\text{wall}}} = 0;\; \mathbf{n}\times \mathbf{u}|_{\varGamma^{\text{out}}} = 0 \} {\hbox{and }} p \in L^2(\varOmega ):\\&\int _\varOmega \eta (\nabla \times \mathbf{u}) \cdot (\nabla \times \mathbf{v}) - p {{\mathrm{div}}}\, \mathbf{v} - q {{\mathrm{div}}}\,\mathbf{u} \,dx + \int _{\varGamma^{\text{out}}} \eta c_{\text{out}} (\mathbf{n}\cdot \mathbf{u}) (\mathbf{n}\cdot \mathbf{v}) \,ds = \int _\varOmega \mathbf{f} \cdot \mathbf{v}\\&\qquad \forall \mathbf{v} \in X, q \in L^2(\varOmega ). \end{aligned}$$
(60)

Note that the problem has been transformed into the homogeneous form such that the non-homogeneous Dirichlet boundary condition is included in the right-hand side term \(\mathbf{f} = \eta \Delta \tilde{\mathbf{u}}\), where \(\tilde{\mathbf{u}}\) is an extension of the Dirichlet boundary conditions which satisfies \({{\mathrm{div}}}\tilde{\mathbf{u}} = 0\). With sufficient regularity \(\mathbf{u} + \tilde{\mathbf{u}}\) is then a solution of (1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leithäuser, C., Pinnau, R. & Feßler, R. Designing polymer spin packs by tailored shape optimization techniques. Optim Eng 19, 733–764 (2018). https://doi.org/10.1007/s11081-018-9396-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-018-9396-3

Keywords

Mathematics Subject Classification

Navigation