Skip to main content
Log in

Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present a nano-scale electro-plasmonic scheme operating at 1550 nm based on plasmonic Metal-Insulator-Metal waveguide and stub filter configuration. The linear dependency of the transmission spectra of the stub filter to the length of the stubs allows designing a switch that works as normally ON or OFF switch by selecting the length of the stubs 300 or 410 nm, respectively. In our proposed waveguide-based structure, the core is an electro-optic material known as 4-dimethyl-amino-Nmethyl-4-stilbazolium tosylate with the refractive index 2.2 while the metal cladding is silver. Three-dimensional Finite Element Method simulations demonstrated that by applying a 10 V voltage to the silver cladding, a red-shift in the transmission spectra of the filter leads to turn the switch OFF or ON with calculated extinction ratio \(-13.83\) and 11.81 dB, respectively. The calculation of the capacitance implies that the switching rise-time of the switch is less than 20 fs and the bandwidth is far beyond the 18 GHz. At the maximum dimension \(460\,\hbox {nm}\times 450\,\hbox {nm}\), the subwavelength size of the switch promises the potential for future compact integrated plasmonic circuitry. For the verification of three dimensional simulation results, we have tried it, using two-dimensional transmission line method for modeling the stub filter, which demonstrates a reasonable accuracy in comparison with three-dimensional finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface Plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  • Çetin, A., Yanik, A., Mertiri, A., Erramilli, A., Müstecaplıoğlu, Ö., Altug, H.: Field-effect active plasmonics for ultracompact electro-optic switching. Appl. Phys. Lett. 101, 121113 (2012)

    Article  ADS  Google Scholar 

  • Collin, S., Pardo, F., Pelouard, J.: Waveguiding in nanoscale metallic apertures. Opt. Express 15(7), 4310–4320 (2007)

    Google Scholar 

  • Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  • Jin, Z.Y., Guange, H.X., Xian, M.: A surface plasmon polariton electro-optic switch based on a metal-insulator-metal structure with a strip waveguide and two side-coupled cavities. Chin. Phys. Lett. 29(6), 064214 (2012)

    Article  ADS  Google Scholar 

  • Kaatuzian, H.: Quantum Photonics, A Theory for Attosecond Optics. AKU Press, Tehran (2012)

    Google Scholar 

  • Liu, J., Fang, G., Zhao, G., Zhang, Y., Liu, S.: Surface plasmon reflector based on serial stub structure. Opt. Express 17, 20134–20139 (2009)

    Article  ADS  Google Scholar 

  • Liu, Y., Zhou, F., Cao, J., Mao, Q.: High-extinction-ratio and low-insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide. Plasmonics 8, 1035–1041 (2013)

    Article  Google Scholar 

  • Manolatou, C., Lipson, M.: All-optical silicon modulators based on carrier injection by two-photon absorption. J. Lightwave Technol. 24(3), 1433–1439 (2006)

    Article  ADS  Google Scholar 

  • Mei, X., Huang, X., Jin, T.: A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide. Plasmonics 6, 613–618 (2011)

    Article  Google Scholar 

  • Min, C., Veronis, G.: Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt. Express 17(13), 10757–10766 (2009)

    Article  ADS  Google Scholar 

  • Naseri Taheri, A., Kaatuzian, H.: Simulation and design of a submicron ultrafast plasmonic switch based on nonlinear doped silicon MIM waveguide. J. Comput. Commun., 1, 23–16 (2013). Scientific Research Publishers

    Google Scholar 

  • Nielsen, M., Elezzabi, A.: Frequency-selective 3-D integration of nanoplasmonic circuits on a Si platform. Opt. Express 20(8), 8592–8597 (2012)

    Article  ADS  Google Scholar 

  • Pan, F., McCallion, K., Chiappetta, N.: Waveguide fabrication and high-speed in-line intensity modulation in 4-N, N-48-dimethylamino-48-N8-methyl-stilbazolium tosylate. Appl. Phys. Lett. 74(4), 492–494 (1999)

    Article  ADS  Google Scholar 

  • Pannipitiya, A., Rukhlenko, I.D., Premaratne, M., Hattori, H.T., Agrawal, G.P.: Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Express 18(6), 6191 (2010)

    Article  ADS  Google Scholar 

  • Park, J., Kim, H., Lee, B.: High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt. Express 16(1), 413–425 (2008)

    Article  ADS  Google Scholar 

  • Perron, D., Wu, M., Horvath, C., Bachman, D., Van, V.: All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator. Opt. Lett. 36(14), 2731–2733 (2011)

    Article  ADS  Google Scholar 

  • Sederberg, S., Driedger, D., Nielsen, M., Elezzabi, A.Y.: Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator. Opt. Express 19(2), 23494–23503 (2011)

    Article  ADS  Google Scholar 

  • Sweatlock, L., Diest, K.: Vanadium dioxide based plasmonic modulators. Opt. Express 20(18), 8700–8709 (2012)

    Article  ADS  Google Scholar 

  • Tao, J., Wang, Q., Haung, X.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6, 753–759 (2011)

    Article  Google Scholar 

  • Thomas, R., Ikonic, Z., Kelsall, R.: Electro-optic metal-insulator-semiconductor-insulator-metal Mach-Zehnder plasmonic modulator. Photon. Nanostruct. Fundam. Appl. 10, 183–189 (2012)

    Article  ADS  Google Scholar 

  • Yu, Z., Veronis, G., Fanb, S.: Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 92, 041117 (2008)

    Article  ADS  Google Scholar 

  • Zho, J., Huang, X., Mei, X.: Plasmonic electro-optical switches operating at telecom wavelengths. Plasmonics 6, 605–612 (2011)

    Article  Google Scholar 

  • Zhu, J., Huang, X., Xu, W.: Plasmonic optical switches based on Mach-Zender interferometer. Phys. Plasmas 18, 072112 (2011)

    Article  ADS  Google Scholar 

  • Zia, R., Schuller, J.A., Chandran, A., Brongersma, M.L.: Plasmonics: The next chip-scale technology. Mater. Today 9, 20–27 (2006)

    Article  Google Scholar 

  • Zografopoulos, D.C., Beccherelli, R.: Long-range plasmonic directional coupler switches controlled by nematic liquid crystals. Opt. Express 21(7), 8240–8250 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Kaatuzian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taheri, A.N., Kaatuzian, H. Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter. Opt Quant Electron 47, 159–168 (2015). https://doi.org/10.1007/s11082-014-9895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-9895-1

Keywords

Navigation