Skip to main content
Log in

Silica based highly nonlinear fibers to generate parabolic self-similar pulses

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Three different silica based normal dispersion fibers are designed to identify the best possible one for efficient parabolic pulse generation. Two of them resemble commonly used single core fibers and optimized in such a way that one has lower dispersion and nonlinear coefficient whereas the other possesses higher dispersion and lower nonlinearity. A silica based multi-cladded highly nonlinear fiber (ND-HNLF) is designed as well by successfully restricting its effective area to a very lower value. The comparative analysis among the three fibers suggests that the ND-HNLF would be the best choice for fiber optic manufacturers for parabolic similariton formation due to its smaller optimum length, no effect of higher order dispersion, high nonlinearity and less input power requirement. From our proposed ND-HNLF, a highly nonlinear dispersion decreasing fiber (HN-NDDF) is also designed and optimized by properly varying different fiber parameters as a function of fiber length. Our study also reveals that the HN-NDDF with a typical property of virtual gain would be beneficial for producing parabolic self-similar pulses at smaller optimum lengths with adequate spectral broadening in comparison to that of ND-HNLF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agrawal, G.P., Baldeck, P.L., Alfano, R.R.: Optical wavebreaking and pulse compression due to cross-phase modulation in optical fibers. Opt. Lett. 14, 137–139 (1989)

    Article  ADS  Google Scholar 

  • Agrawal, G.P.: Applications of Nonlinear Fiber Optics. Academic Press, New York (2001)

  • Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (2007)

  • Anderson, D., Desaix, M., Lisak, M., Quiroga-Teixeiro, M.L.: Wave breaking in nonlinear-optical fibers. J. Opt. Soc. Am. B 9, 1358–1361 (1992)

    Article  ADS  Google Scholar 

  • Anderson, D., Desaix, M., Karlsson, M., Lisak, M., Quiroga-Teixeiro, M.L.: Wave-breaking free pulses in nonlinear-optical fibers. J. Opt. Soc. Am. B 10, 1185–1190 (1993)

    Article  ADS  Google Scholar 

  • Bale, B.G., Boscolo, S.: Impact of third-order fiber dispersion on the evolution of parabolic optical pulses. J. Opt. 12, 015202(1–6) (2010)

  • Boscolo, S., Latkin, A.I., Turitsyn, S.K.: Passive nonlinear pulse shaping in normally dispersive fiber systems. IEEE J. Quant. Electron. 44, 1196–1203 (2008)

    Article  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics. Academic Press, San Diego (2008)

  • Chang, G., Galvanauskas, A., Winful, H.G., Norris, T.B.: Dependence of parabolic pulse amplification on stimulated Raman scattering and gain bandwidth. Opt. Lett. 29, 2647–2649 (2004)

    Article  ADS  Google Scholar 

  • Chung, K.-W., Kim, S., Yin, S.: Design of a highly nonlinear dispersion-shifted fiber with a small effective area by use of the beam propagation method with the Gaussian approximation method. Opt. Lett. 28, 2031–2033 (2003)

    Article  ADS  Google Scholar 

  • Dianov, E.M., Prokhorov, A.M.: Medium-power CW Raman fiber lasers. IEEE J. Sel. Topics Quant. Electron. 6, 1022–1028 (2000)

    Article  Google Scholar 

  • Domachuk, P., Wolchover, N.A., Cronin-Golomb, M., Wang, A., George, A.K., Cordeiro, C.M.B., Knight, J.C., Omenetto, F.G.: Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear Tellurite PCFs. Opt. Express 16, 7161–7168 (2008)

    Article  ADS  Google Scholar 

  • Dudley, J.M., Finot, C., Richardson, D.J.: Self-similarity in ultrafast nonlinear optics. Nat. Phys. 3, 597–603 (2007)

    Article  Google Scholar 

  • Fermann, M.E., Kruglov, V.I., Thomsen, B.C., Dudley, J.M., Harvey, J.D.: Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 84, 6010–6013 (2000)

    Article  ADS  Google Scholar 

  • Finot, C., Millot, G., Billet, C., Dudley, J.M.: Experimental generation of parabolic pulses via Raman simplification in optical fiber. Opt. Express 11, 1547–1552 (2003)

    Article  ADS  Google Scholar 

  • Finot, C., Provost, L., Petropoulos, P., Richardson, D.J.: Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. Opt. Express 15, 852–864 (2007a)

    Article  ADS  Google Scholar 

  • Finot, C., Barviau, B., Millot, G., Guryanov, A., Sysoliatin, A., Wabnitz, S.: Parabolic pulse generation with active or passive dispersion decreasing optical fibers. Opt. Express 15, 15824–15835 (2007b)

    Article  ADS  Google Scholar 

  • Finot, C., Kibler, B., Provost, L., Wabnitz, S.: Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25, 1938–1948 (2008)

    Article  ADS  Google Scholar 

  • Finot, C., Dudley, J.M., Kibler, B., Richardson, D.J., Millot, G.: Optical parabolic pulse generation and applications. IEEE J. Quant. Electron. 45, 1482–1488 (2009)

    Article  ADS  Google Scholar 

  • Ghatak, A., Thyagarajan, K.: Introduction to Fiber Optics. Cambridge University Press, UK (1999)

  • Ghosh, D., Basu, M.: Propagation of short soliton pulses through a parabolic index fiber with dispersion decreasing along length. Opt. Commun. 281, 3361–3368 (2008)

    Article  ADS  Google Scholar 

  • Ghosh, D., Basu, M., Sarkar, S.: Generation of self-similar parabolic pulses by designing normal dispersion decreasing fiber amplifier as well as its staircase substitutes. J. Lightwave Technol. 27, 3880–3887 (2009)

    Article  ADS  Google Scholar 

  • Hirano, M., Nakanishi, T., Okuno, T., Onishi, M.: Silica-based highly nonlinear fibers and their application. IEEE J. Sel. Top. Quant. Electron. 15, 103–113 (2009)

    Article  Google Scholar 

  • Hirooka, T., Nakazawa, M.: Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion. Opt. Lett. 29, 498–500 (2004)

    Article  ADS  Google Scholar 

  • Krčmařík, D., Slavík, R., Park, Y., Azaña, J.: Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter. Opt. Express 17, 7074–7087 (2009)

    Article  ADS  Google Scholar 

  • Kruglov, V.I., Aguergaray, C., Harvey, J.D.: Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation. Opt. Express 20, 8741–8754 (2012)

    Article  ADS  Google Scholar 

  • Kuo, B.P.-P., Fini, J.M., Grüner-Nielsen, L., Radic, S.: Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis. Opt. Express 20, 18611–18619 (2012)

    Article  ADS  Google Scholar 

  • Limpert, J., Schreiber, T., Clausnitzer, T., Zöllner, K., Fuchs, H.-J., Kley, E.-B., Zellmer, H., Tünnermann, A.: High-power femtosecond Yb-doped fiber amplifier. Opt. Express 10, 628–638 (2002)

    Article  ADS  Google Scholar 

  • Luo, H.-G., Zhao, D., He X.-G: Exactly controllable transmission of nonautonomous optical solitons. Phys. Rev. A 79, 063802(1–4) (2009)

  • Marhic, M.E., Wong, K.K.-Y., Kazovsky, L.G., Tsai, T.-E.: Continuous-wave fiber optical parametric oscillator. Opt. Lett. 27, 1439–1441 (2002)

    Article  ADS  Google Scholar 

  • Nishizawa, N., Goto, T.: Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers. J. Sel. Top. Quant. Electron. 7, 518–524 (2001)

    Article  Google Scholar 

  • Parmigiani, F., Finot, C., Mukasa, K., Ibsen, M., Roelens, M.A.F., Petropoulos, P., Richardson, D.J.: Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Opt. Express 14, 7617–7622 (2006)

    Article  ADS  Google Scholar 

  • Poletti, F., Feng, X., Ponzo, G.M., Petrovich, M.N., Loh, W.H., Richardson, D.J.: All-solid highly nonlinear single mode fibers with a tailored dispersion profile. Opt. Express 19, 66–80 (2011)

    Article  ADS  Google Scholar 

  • Rothenberg, J.E.: Femtosecond optical shocks and wave breaking in fiber propagation. J. Opt. Soc. Am. B 6, 2392–2401 (1989)

    Article  ADS  Google Scholar 

  • Ruehl, A., Prochnow, O., Wandt, D., Kracht, D., Burgoyne, B., Godbout, N., Lacroix, S.: Dynamics of parabolic pulses in an ultrafast fiber laser. Opt. Lett. 31, 2734–2736 (2006)

    Article  ADS  Google Scholar 

  • Smith, S.P., Zarinetchi, F., Ezekiel, S.: Narrow-linewidth stimulated Brillouin fiber laser and applications. Opt. Lett. 16, 393–395 (1991)

    Article  ADS  Google Scholar 

  • Tamura, K.R., Kubota, H., Nakazawa, M.: Fundamentals of stable continuum generation at high repetition rates. IEEE J. Quant. Electron. 36, 773–779 (2000)

    Article  ADS  Google Scholar 

  • Tomlison, W.J., Stolen, R.H., Johnson, A.M.: Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 457–459 (1985)

    Article  ADS  Google Scholar 

  • Wabnitz, S., Finot, C.: Theory of parabolic pulse propagation in nonlinear dispersion-decreasing optical fiber amplifiers. J. Opt. Soc. Am. B 25, 614–621 (2008)

    Article  ADS  Google Scholar 

  • Yang, X., Richardson, D.J., Petropoulos, P.: Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping. J. Lightwave Technol. 30, 1971–1977 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Department of Science and Technology (DST), Government of India for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousumi Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Chowdhury, D. & Basu, M. Silica based highly nonlinear fibers to generate parabolic self-similar pulses. Opt Quant Electron 47, 2615–2635 (2015). https://doi.org/10.1007/s11082-015-0144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0144-z

Keywords

Navigation