Skip to main content
Log in

All-optical S-R flip flop using 2-D photonic crystal

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The photonic crystals (PhC) draw significant attention to build all optical logic devices and considered one of the solutions for the opto-electronic bottleneck via speed and size. The paper presents a novel all optical SR flip flop memory based on two optical NOR gates using 2D PhC. The design of optical Flip Flop is based on four nonlinear photonic crystal ring resonator and T-type waveguide. The total size of the proposed optical memory flip flop is equal to 30 μm × 30 μm. The structure has lattice constant ‘a’ is equal to 630 nm and bandgap range from 0.32 to 044. The flip flop design has a switching time in few Picoseconds and low power input of 50 mW. The PhC structure has a square lattice of silicon rod with refractive index of 3.39 in air. The overall design and the results are discussed through the experimental implementation and the numerically simulation to confirm its operation and feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbasi, A., Noshad, M., Ranjbar, R., Reza, K.: Ultra compact and fast all optical flip flop design in photonic crystal platform. Opt. Commun. 285, 5073–5078 (2012)

    Article  ADS  Google Scholar 

  • Andalib, P., Granpayeh, N.: All-optical ultra-compact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am B 26, 10–16 (2009)

    Article  ADS  Google Scholar 

  • Dang, Z., Breese, M.B.H., Recio-Sánchez, G., Azimi, S., Song, J., Liang, H., Banas, A., Torres-Costa, V., Martín-Palma, R.J.: Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method. Nanoscale Res. Lett. 7(1), 1–7 (2012)

  • Gedney, S.D.: Introduction to Finite-Difference Time-Domain (FDTD) Method for Electromagnetics. Morgan and Claypool, Lexington (2010)

    Google Scholar 

  • Ghadrdan, M., Mansouri-Birjandi, M.A.: All-optical NOT logic gate based on photonic crystals. Int. J. Electr. Comput. Eng. (IJECE) 3(4), 478–482 (2013)

    Google Scholar 

  • Ghaffari, A., Monifi, F., Djivid, M.: Analysis of photonic crystal power splitters with different configurations. J. Appl. Sci. 8(8), 1416–1425 (2008)

    Article  ADS  Google Scholar 

  • Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001)

    Article  ADS  Google Scholar 

  • Kabilan, A.P., Christina, X.S., Caroline, P.E.: Design of optical logic gates using photonic crystal. Proceedings of International Conference on Internet, pp 1–4 (2009)

  • Li, L., Liu, G.Q.: Photonic crystal ring resonator channel drop filter. Optik 124(17), 2966–2968 (2013)

    Article  ADS  Google Scholar 

  • Lin, W.-P., Hsu, Y.-F., Kuo, H.-L.: Design of optical NOR logic gates using two dimension photonic crystals. Am. J. Mod. Phys. 2(3), 144–147 (2013)

    Article  Google Scholar 

  • Liu, Y., Qin, F., Meng, Z.-M., Zhou, F., Mao, Q.-H., Li, Z.-Y.: All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt. Express 19(3), 1945–1953 (2011)

    Article  ADS  Google Scholar 

  • Loňcar, M., Doll, T., Vǔcković, J., Scherer, A.: Design and fabrication of silicon photonic crystal optical waveguides. J. Lightwave Technol. 18(10), 1402–1411 (2000)

    Article  ADS  Google Scholar 

  • Mano, M.M.: Computer engineering hardware design. Prantice Hall international (1988)

  • Massaro, A.: Photonic Crystals: Introduction, Applications and Theory, 1st edn. In Tech publisher, Rijeka (2012)

    Book  Google Scholar 

  • Shinya, A., Mitsugi, S., Tanabe, T., Notomi, M., Yokohama, I., Takara, H., Kawanishi, S.: All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two dimensional photonic crystal slab. Opt. Express 14, 1230–1235 (2006)

    Article  ADS  Google Scholar 

  • Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A., Kuramochi, E.: All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87(15), 151112 (2005)

  • Wu, Y.D., Hsu, K.W., Shih, T.T., Lee, J.J.: New design of four-channel add-drop filters based on double resonant cavity photonic crystals. J. Opt. Soc. Am. B 26, 640–644 (2009)

    Article  ADS  Google Scholar 

  • Yang, Y.-P., Yang, I.-C., Chang C.H., Tsai, Y.-T., Lee, K.-Y., Tsai, Y.-R., Tu, Y.-S., Liao, S.-F., Huang, C.-C., Lin, Y.-J., Lee, W.-Y., Lee, C.-C.: Binary operating in all-optical logic gates based on photonic crystals. 2012 International Symposium on Computer, Consumer and Control (2012)

  • Zoiros, K.E., Houbavlis, T., Kalyvas, M.: Ultra-high speed all-optical shift registers and their applications in OTDM networks. Opt. Quantum Electron. 36, 1005–1053 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer A. Moniem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moniem, T.A. All-optical S-R flip flop using 2-D photonic crystal. Opt Quant Electron 47, 2843–2851 (2015). https://doi.org/10.1007/s11082-015-0173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0173-7

Keywords

Navigation