Skip to main content
Log in

100 km Brillouin optical time-domain reflectometer based on unidirectionally pumped Raman amplification

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The sensing distance of the optical time-domain reflectometry (BOTDR) is one of the key parameters for many real applications. In practice, the attenuated stimulating pulse light and its Brillouin scattering signal in the general BOTDR system will become too weak as the sensing fiber goes farther, which limits their uses in certain applications in which the distance to monitor is larger. To enhance the operating range of the BOTDR system, unidirectionally pump Raman amplifier is adopted for amplifying the stimulating pulse light and the scattering signal. Furthermore, our experiments confirm that 100 km sensing is realized by regulating parameters such as the power of Raman pump and EDFA gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alahbabi, M.N., Cho, Y.T., Newson, T.P.: 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification. J. Opt. Soc. 22(6), 1321–1324 (2005)

    Article  ADS  Google Scholar 

  • Horiguchi, T., Tateda, M.: BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory. J. Lightwave Technol. 7(8), 1170–1176 (1989)

    Article  ADS  Google Scholar 

  • Jia, X.H., Rao, Y.J., Deng, K.: Experimental demonstration on 2.5-m spatial resolution and 1 °C temperature uncertainty over long-distance BOTDA with combined Raman Amplification and optical pulse coding. J. IEEE Photonic Tech. Lett. 23(7), 435–437 (2011a)

    Article  ADS  Google Scholar 

  • Jia, W.G., Yang, S.J., Yin, J.Q., et al.: Gain spectra of Raman scattering and parametric amplification in birefringence dispersion shifted fiber. J. Chin. J. Lumin. 32(5), 487–492 (2011b)

    Article  Google Scholar 

  • Jia, X.H., Rao, Y.J.: Enhanced sensing performance in long distance Brillouin optical time-domain analyzer based on Raman amplification: theoretical and experimental investigation. J. Lightwave Technol. 11(28), 1624–1630 (2010)

    ADS  Google Scholar 

  • Kwon, H., Kim, S., Yeom, S., Kang, B., Kim, K., Kim, T., Jang, H., Kim, J., Kang, S.: Analysis of nonlinear fitting methods for distributed measurement of temperature and strain over 36 km optical fiber based on spontaneous Brillouin backscattering. J. Opt. Commun. 294, 59–63 (2013)

    Article  ADS  Google Scholar 

  • Li, A., Hu, Q., Che, D., Wang, Y., Shieh, W.: Measurement of distributed mode coupling in a few-mode fiber using a Brillouin optical time domain reflectometer. In: Conference on ECOC 2014, vol. 1–3 (2014)

  • Li, Y.Q., Wang, J., Yang, Z.: A method for improving BOTDR system performance. In: Symposium on Photonics and Optoelectronics (SOPO), pp. 1–4. IEEE (2012)

  • Lu, Y., Yao, Y., Zhao, X., Wang, F., Zhang, X.: Influence of non-perfect extinction ratio of electro-optic modulator on signal-to-noise ratio of BOTDR. J. Opt. Commun. 297, 48–54 (2013)

    Article  ADS  Google Scholar 

  • Maughan, S.M., Kee, H.H., Newson, T.P.: 57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection. J. Opt. Lett. 26(6), 331–333 (2001)

    Article  ADS  Google Scholar 

  • Naruse, H., Tateda, M., Ohno, H., Shimada, A.: Linear strain distribution dependence of the Brillouin gain spectrum. In: Optical fiber sensors conference technical digest, 2002, OFS 2002, 15th, 2002, vol. 1, pp. 309–312 (2002)

  • Rao, Y.J., Chang, L., Jia, X.H.: Brillouin optical time domain analysis system based on Raman amplification and semiconductor optical amplifier. J. Univ. Electron. Sci. Technol. China 4(41), 621–625 (2012)

    Google Scholar 

  • Rodríguez-Barrios, F., Martín-López, S., Carrasco-Sanz, A., et al.: Distributed Brillouin fiber sensor assisted by first-order Raman Amplification. J. Lightwave Technol. 28(15), 2162–2172 (2010)

    Article  ADS  Google Scholar 

  • Shen, Y.C., Song, M.P., Zhang, X.M., et al.: Brillouin scattering in long optical fiber. J. Acta Photonica Sin. 33(8), 931–934 (2004)

    Google Scholar 

  • Song, M.P., Ma, Z.G.: Optical signal processing in Brillouin optical time domain reflector based Morlet wavelet transform. J. Acta Opt. Sin. 27(5), 819–823 (2007)

    MathSciNet  Google Scholar 

  • Song, M.P., Zhang, X.M.: Design and realization of Briliouin optical time domain reflectometer with 34 km in sensing length. J. Chin. J. Sci. Instrum. 26(11), 1155–1158 (2005)

    ADS  Google Scholar 

  • Sawaguchi, H., Kashiwagi, K., Tanaka, Y., Kurokawa, T.: Sensing distance elongation in BOTDR scheme using optical frequency comb. In: C. MOC’13, vol. 1, pp. 3–5 (2013)

  • Wang, J., Jia, X.H., Rao, Y.J., et al.: Phase-sensitive optical time-domain reflectometer based on bi-directional Raman amplification. J. Acta Physica Sinica. 4, 034 (2013)

    Google Scholar 

  • Wu, X., Ying, Z., Zhang, Y., Zhang, X.: Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator. J. Electron. Lett. 50(14), 1014–1016 (2014)

    Article  Google Scholar 

  • Yan, M.H., Chen, J.P., Li, J.L., et al.: Optimal configuration of multiple pump powers and wavelengths for balanced pre- and post-pumped Raman fiber amplifiers. J. Chin. J, Lasers 11(2), 61–65 (2002)

    Google Scholar 

  • Zhang, Y., Ying, Z., Tu, G., Zhang, X., Lv, L.: Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system. J. Electron. Lett. 50(22), 1624–1626 (2014)

    Article  Google Scholar 

  • Zhang, Z., Gong, H.: Amplification effect on SBS and Rayleigh scattering in the backward pumped distributed fiber Raman amplifier. J. Chin. Opt. Lett. 7, 393–395 (2009)

    Article  Google Scholar 

  • Zhao, Y., Zhang, Y., Han, B., Qin, C., Wang, Q.: High sensitive BOTDR demodulation method. J. Lightwave Technol. 31(21), 3345–3351 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaolan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Xia, Q., Feng, K. et al. 100 km Brillouin optical time-domain reflectometer based on unidirectionally pumped Raman amplification. Opt Quant Electron 48, 30 (2016). https://doi.org/10.1007/s11082-015-0314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-015-0314-z

Keywords

Navigation