Skip to main content
Log in

Photoresponse characteristics from computationally efficient dynamic model of uni-traveling carrier photodiode

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A time domain model of bulk InGaAs/InP uni-traveling carrier photodiode is developed in terms of coupled differential equations of incident photon flux and photo generated carrier density rates. For fast computation of model parameters linear approximation of material absorption coefficient is made with carrier density. Wavelength and bias voltage dependent responsivity is well demonstrated by the model and their values at different absorption layer widths agree well with the experimental results. Optical power induced output photocurrent saturation is also explained. Furthermore, from the temporal variation of output photocurrent, estimation of device bandwidth is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi, S.: Properties of Semiconductor Alloys Group-IV, III-V and II-VI Semiconductors, pp. 378–379. Wiley, UK (2009)

    Google Scholar 

  • Chtioui, M., Enard, A., Carpentier, D., Bernard, S., Rousseau, B., Lelarge, F., Pommereau, F., Achouche, M.: High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links. IEEE Photon. Tech. Lett. 20(3), 202–204 (2008a)

    Article  ADS  Google Scholar 

  • Chtioui, M., Enard, A., Carpentier, D., Bernard, S., Rousseau, B., Lelarge, F., Pommereau, F., Achouche, M.: High-performance uni-traveling-carrier photodiodes with a new collector design. IEEE Photon. Tech. Lett. 20(13), 1163–1165 (2008b)

    Article  ADS  Google Scholar 

  • Coleman, P.D., Eden, R.C., Weaver, J.N.: Mixing and detection of coherent light in a bulk photoconductor. IEEE Trans. Electron. Devices 11(11), 488–497 (1964)

    Article  Google Scholar 

  • Connelly, M.J.: Semiconductor Optical Amplifiers, pp. 45–71. Kluwer Academic, Boston (2002)

    Google Scholar 

  • Fawcett, W., Herbert, D.C.: High-field transport in gallium arsenide and indium phosphide. J. Phys. C Solid State Phys. 7, 1641–1654 (1974)

    Article  ADS  Google Scholar 

  • Guegos, G. (ed.): Photonic Devices for Telecommunications: How to Model and Measure, pp. 171–172. Springer, New York (1998)

    Google Scholar 

  • Ishibashi, T., Furuta, T., Fushimi, H., Kodama, S., Ito, H., Nagatsuma, T., Shimizu, N., Miyamoto, Y.: InP/InGaAs uni-traveling-carrier photodiodes. IEICE Trans. Electron. E83-C(6), 938–949 (2000)

    Google Scholar 

  • Ishibashi, T., Furuta, T., Fushimi, H., Ito, H.: Photoresponse characteristicsof uni-traveling-carrier photodiodes. Proc. SPIE, Phys. Simul. Optoelectron. Devices IX, San Jose 4283, 469–479 (2001)

    ADS  Google Scholar 

  • Ito, H., Furuta, T., Kodama, S., Ishibashi, T.: Zero-bias high-speed and high-output voltage operation of cascade-twin uni-traveling-carrier photodiode. IEEE Electron. Lett. 36(24), 2034–2036 (2003)

    Article  Google Scholar 

  • Ito, H., Kodama, S., Muramoto, Y., Furuta, T., Nagatsuma, T., Ishibashi, T.: High-speed and high-output InP–InGaAs uni-traveling carrier photodiodes. IEEE J. Sel. Top. Quantum Electronics 10(4), 709–727 (2004)

    Article  Google Scholar 

  • Khanra, S., Das Barman, A.: Circuit model of UTC-PD with high power and enhanced bandwidth technique. Opt. Quantum Electron. 47(6), 1397–1405 (2014)

    Article  Google Scholar 

  • Rees, H.D., Gray, K.W.: Indium phosphide: a semiconductor for microwave devices. Solid-State Electron. Devices 1(1), 1–8 (1976)

    Article  ADS  Google Scholar 

  • Shimizu, N., Miyamoto, Y., Hirano, A., Sato, K., Ishibashi, T.: RF saturation mechanism of InP/lnGaAs unitravelling-carrier photodiode. Electron. Lett. 36(8), 750–751 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The work is undertaken as part of Information Technology Research Academy (ITRA), Media Lab Asia project entitled “Mobile Broadband Service Support over Cognitive Radio Networks”. Author would like to thank the anonymous reviewer for his suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senjuti Khanra.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 15.

Guest edited by Julien Javaloyes, Weida Hu, Slawek Sujecki and Yuh-Renn Wu.

Appendix 1

Appendix 1

Integrating both side of Eq. (1), we get

$$\mathop \int \limits_{{Q_{in} \left( t \right)}}^{{Q_{out} \left( t \right)}} \frac{dQ(x,t)}{Q(x,t)} = - \mathop \int \limits_{0}^{{W_{A} }} \left[ {\alpha (N,\lambda ) + \beta (N)} \right]dx$$

and employing the material loss coefficient expression of β(N) from Eq. (2) and linearised approximation of absorption coefficient α(N, λ) from Eq. (4), the above expression can be solved as

$$Q_{out} (t) = Q_{in} (t) \cdot \exp \left[ { - (m + \beta_{1} )\mathop \int \limits_{0}^{{W_{A} }} N(x,t)dx + (mN_{0} - \beta_{0} )]\mathop \int \limits_{0}^{{W_{A} }} dx} \right].$$

Now integrating the first term of Eq. (6) with respect to x from 0 to W A , we get

$$\begin{aligned}&- \mathop \int \limits_{0}^{{W_{A} }} \left[ {\alpha (N,\lambda ) + \beta (N)} \right]Q(x,t)dx=Q_{out} (t) - Q_{in} (t) \hfill \\&\quad =Q_{in} (t)\left[ {\exp \left\{ { - (m + \beta_{1} )\int\limits_{0}^{{W_{A} }} {N(x,t)dx + (mN_{0} - \beta_{0} )} \int\limits_{0}^{{W_{A} }} {dx} } \right\}} \right] - Q_{in} \left( t \right) \hfill \\&\quad=Q_{in} (t)\left[ {\exp \left\{ { - (m + \beta_{1} )\frac{h(t)}{A} + (mN_{0} - \beta_{0} )W_{A} } \right\} - 1} \right] \hfill \\ \end{aligned}$$

by using Eq. (7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanra, S., Das Barman, A. Photoresponse characteristics from computationally efficient dynamic model of uni-traveling carrier photodiode. Opt Quant Electron 48, 129 (2016). https://doi.org/10.1007/s11082-015-0368-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-015-0368-y

Keywords

Navigation