Skip to main content
Log in

Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics

Dispersive dark optical soliton with Tzitzéica ...

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A improvement of the expansion methods namely the improved \(\tan \left( \varPhi (\xi )/2\right)\)-expansion method for solving the Tzitzéica type nonlinear evolution equations is proposed. In this work, the dispersive optical solitons that are governed by the Tzitzéica type nonlinear evolution equations. As a result, many new and more general exact travelling wave solutions are obtained including periodic function solutions, soliton-like solutions and trigonometric function solutions. The exact particular solutions containing four types hyperbolic function solution, trigonometric function solution, exponential solution and rational solution. We obtained the further solutions comparing with other methods. Recently this method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. Abundant exact travelling wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play important role in engineering fields. It is shown that this method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving the nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abazari, R.: The (G’/G)-expansion method for Tzitzéica type nonlinear evolution equations. Math. Comput. Model. 52, 1834–1845 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Abdou, M.A., Soliman, A.A., Basyony, S.T.: New application of exp-function method for improved Boussinesq equation. Phys. Lett. A 369, 469–475 (2007)

    Article  ADS  MATH  Google Scholar 

  • Abdou, M.A., Soliman, A.A.: Modified extended tanh-function method and its application on nonlinear physical equations. Phys. Lett. A 353, 487–492 (2006)

    Article  ADS  Google Scholar 

  • Alam, M.N., Akbar, M.A., Mohyud-Din, S.T.: A novel (G’/G)-expansion method and its application to the Boussinesq equation. Chin. Phys. B 23, 020202 (2014)

    Article  Google Scholar 

  • Borhanifar, A., Moghanlu, A.Z.: Application of the (G’/G )-expansion method for the Zhiber–Shabat equation and other related equations. Math. Comput. Model. 54, 2109–2116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y., Wang, Q.: Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1)-dimensional dispersive long wave equation. Chaos Solitons Fractals 24, 745–757 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. J. 26, 448–479 (2010)

    MathSciNet  MATH  Google Scholar 

  • Dehghan, M., Manafian, J., Saadatmandi, A.: Application of semi-analytic methods for the Fitzhugh–Nagumo equation , which models the transmission of nerve impulses. Math. Methods Appl. Sci. 33, 1384–1398 (2010)

    MathSciNet  MATH  Google Scholar 

  • Dehghan, M., Manafian Heris, J., Saadatmandi, A.: Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics. Int. J. Numer. Methods Heat Fluid Flow 21, 736–753 (2011)

    Article  MathSciNet  Google Scholar 

  • Dehghan, M., Manafian, J.: The solution of the variable coefficients fourth–order parabolic partial differential equations by homotopy perturbation method. Z. Naturfor. 64a, 420–430 (2009)

    ADS  Google Scholar 

  • Ebrahimi Ghogdia, S., Ghomanjani, F., Saberi-Nadjafi, J.: Expansion of the Exp-function method for solving systems of two-dimensional Navier–Stokes equations. J. Taibah Univ. Sci. 9, 121–125 (2015)

    Article  Google Scholar 

  • El-Wakil, S.A., Abdou, M.A.: New exact travelling wave solutions using modified extended tanh-function method. Chaos Solitons Fractals 31, 840–852 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gray, P., Scott, S.K.: Chemical Oscillation and Instabilities-Nonlinear Chemical Kinetics. Oxford Science Publications, Clarendon, Oxford (1990)

    Google Scholar 

  • Hafez, M.G., Alam, M.N., Akbar, M.A.: Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system. J. King Saud Univ.-Sci. 27, 105–112 (2015)

    Article  Google Scholar 

  • He, J.H.: Variational iteration method a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech. 34, 699–708 (1999)

    Article  ADS  MATH  Google Scholar 

  • Huber, A.: A note on a class of solitary-like solutions of the Tzitzéica equation generated by a similarity reduction. Phys. D. 237, 1079–1087 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari, H., Kadem, A., Baleanu, D.: Variational iteration method for a fractional-order Brusselator system. Abstract Appl. Anal. 2014, 1–6 (2014)

    MathSciNet  Google Scholar 

  • Jawad, A.J.M., Petkovic, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217, 869–877 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Kabir, M.M., Khajeh, A.: New explicit solutions for the Vakhnenko and a generalized form of the nonlinear heat conduction equations via exp-function method. Int. J. Nonlinear Sci. Numer. Simul. 10, 1307–1318 (2009)

    Article  Google Scholar 

  • Ma, W.X., You, Y.: Rational solutions of the Toda lattice equation in Casoratian form. Chaos Solitons Fractals 22, 395–406 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Manafian, J., Lakestani, M.: Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (G’/G)-expansion method. Pramana J. Phys. 4, 1–22 (2015a)

    Google Scholar 

  • Manafian, J., Lakestani, M.: Optical solitons with Biswas–Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 130, 1–12 (2015b)

    Article  Google Scholar 

  • Manafian, J., Lakestani, M.: New improvement of the expansion methods for solving the generalized Fitzhugh-Nagumo equation with time-dependent coefficients. Int. J. Eng. Math. 2015, 107978 (2015c). doi:10.1155/2015/107978

    Article  Google Scholar 

  • Manafian, J., Lakestani, M.: Application of \(tan(\phi /2)\)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik-Int. J. Light Electron Opt. 127, 2040–2054 (2016)

    Article  Google Scholar 

  • Manafian Heris, J., Lakestani, M.: Solitary wave and periodic wave solutions for variants of the KdV-Burger and the K(n, n)-Burger equations by the generalized tanh-coth method. Commun. Numer. Anal. 2013, 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  • Manafian, J., Lakestani, M., Bekir, A.: Study of the analytical treatment of the (2+1)-dimensional zoomeron, the Duffing and the SRLW equations via a new analytical approach. Int. J. Appl. Comput. Math. 1, 1–26 (2015). doi:10.1007/s40819-015-0058-2

    Article  Google Scholar 

  • Mikhailov, A.V.: The reduction problem and the inverse scattering method. Physica 3D(2), 73–117 (1910)

    ADS  Google Scholar 

  • Mohyud-Din, S.T., Noor, M.A., Noor, K.I.: Some relatively new techniques for nonlinear problems. Math. Problems Eng. 2009, 1–26 (2009). doi:10.1155/2009/234849. Article ID 234849

    Google Scholar 

  • Mohyud-Din, S.T., Noor, M.A., Asif, W.: Exp-function method for generalized traveling solutions of Calogero-Degasperis-Fokas equation. Z. Naturfor. A 65a, 78–84 (2010)

    ADS  Google Scholar 

  • Mohyud-Din, S.T., Yildirim, A., Sezer, S.A.: Numerical soliton solutions of the improved Boussinesq equation. Int. J. Numer. Methods Heat Fluid Flow 21, 822–827 (2011)

    Article  MathSciNet  Google Scholar 

  • Mohyud-Din, S.T., Yildirim, A., Sariaydin, S.: Numerical soliton solution of the Kaup-Kupershmidt equation. Int. J. Numer. Methods Heat Fluid Flow 21, 272–281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Mohyud-Din, S.T., Khan, Y., Naeem, F., Yildirim, A.: Exp-function method for solitary and periodic solutions of Fitzhugh Nagumo equations. Int. J. Numer. Methods Heat Fluid Flow 22, 335–341 (2012)

    Article  Google Scholar 

  • Naher, H., Abdullah, F.A., Mohyud-Din, S.T.: Extended generalized Riccati equation mapping method for the fifth-order Sawada–Kotera equation. AIP Adv. 3, 052104 (2013). doi:10.1063/1.4804433

    Article  ADS  Google Scholar 

  • Naher, H., Abdullah, F.A.: New approach of (G’/G)-expansion method and new approach of generalized (G’/G)-expansion method for nonlinear evolution equation. AIP Adv. 3, 032116 (2013). doi:10.1063/1.4794947

    Article  ADS  Google Scholar 

  • Noor, M.A., Mohyud-Din, S.T., Asif, W.: Exp-function method for generalized traveling solutions of master partial differential equations. Acta Appl. Math. 104, 131–137 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Noor, M.A., Mohyud-Din, S.T., Asif, W., Eisa, A.A.S.: Exp-function method for traveling wave solutions of nonlinear evolution equations. Appl. Math. Comput. 216, 477–483 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Roshid, O.R., Rahman, M.A.: The exp(-\(\Phi (\xi )\))-expansion method with application in the (1+1)-dimensional classical Boussinesq equations. Results Phys. 4, 150–155 (2014)

    Article  Google Scholar 

  • Saba, F., Jabeen, S., Akbar, H., Tauseef Mohyud-Din, S.: Modified alternative (G’/G)-expansion method to general Sawada–Kotera equation of fifth-order. J. Egypt. Math. Soc. 23, 416–423 (2015)

    Article  Google Scholar 

  • Tzitzéica, G.: Géometric infinitésimale-sur une nouvelle classe de surface. C. R. Math. Acad. Sci. Paris 150, 227–232 (1910)

    Google Scholar 

  • Wazwaz, A.M.: The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzéica–Dodd–Bullough equations. Chaos Solitons Fractals 25, 55–63 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: Travelling wave solutions for combined and double combined sine–cosine–Gordon equations by the variable separated ODE method. Appl. Math. Comput. 177, 755–760 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Yildirim, A., Pinar, Z.: Application of the exp-function method for solving nonlinear reaction-diffusion equations arising in mathematical biology. Comput. Math. Appl. 60, 1873–1880 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Zhao, J., Liu, J., Tang, B.: Homotopy perturbation method for two dimensional time-fractional wave equation. Appl. Math. Model. 38, 5545–5552 (2014)

    Article  MathSciNet  Google Scholar 

  • Zhao, X., Wang, L., Sun, W.: The repeated homogeneous balance method and its applications to nonlinear partial differential equations. Chaos Solitons Fractals 28, 448–453 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Manafian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manafian, J., Lakestani, M. Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics. Opt Quant Electron 48, 116 (2016). https://doi.org/10.1007/s11082-016-0371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0371-y

Keywords

Navigation