Skip to main content
Log in

Modulation response of nanolasers: what rate equation approaches miss

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Rate equation approaches are a standard method to describe and examine the modulation dynamics of various semiconductor lasers, including nanolasers with high spontaneous emission rates. Using the more complex Bloch equation model we investigate the impact of the internal timescales on the stability and the modulation response. We demonstrate the limitation of rate equation approaches for systems where photon decay rate and polarization decay have similar orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arecchi, F.T., Lippi, G.L., Puccioni, G.P., Tredicce, J.R.: Deterministic chaos in laser with injected signal. Opt. Commun. 51(5), 308–314 (1984)

    Article  ADS  Google Scholar 

  • Chow, W.W., Jahnke, F., Gies, C.: Emission properties of nanolasers during the transition to lasing. Light Sci. Appl. 3, e201 (2014). doi:10.1038/lsa.2014.82

    Article  Google Scholar 

  • Ding, K., Ning, C.Z.: Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers. Semicond. Sci. Technol. 28(12), 124002 (2013). doi:10.1088/0268-1242/28/12/124002

    Article  ADS  Google Scholar 

  • Lau, E.K., Lakhani, A.A., Tucker, R.S., Wu, M.C.: Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express 17(10), 7790–7799 (2009). doi:10.1364/oe.17.007790

    Article  ADS  Google Scholar 

  • Li, D.B., Ning, C.Z.: Interplay of various loss mechanisms and ultimate size limit of a surface plasmon polariton semiconductor nanolaser. Opt. Express 20(15), 16348–16357 (2012)

    Article  ADS  Google Scholar 

  • Lingnau, B., Lüdge, K., Chow, W.W., Schöll, E.: Influencing modulation properties of quantum-dot semiconductor lasers by carrier lifetime engineering. Appl. Phys. Lett. 101(13), 131107 (2012)

    Article  ADS  Google Scholar 

  • Lorke, M., Nielsen, T.R., Mørk, J.: Influence of carrier dynamics on the modulation bandwidth of quantum-dot based nanocavity devices. Appl. Phys. Lett. 97, 211106 (2010). doi:10.1063/1.3520525

    Article  ADS  Google Scholar 

  • Lorke, M., Suhr, T., Gregersen, N., Mørk, J.: Theory of nanolaser devices: rate equation analysis versus microscopic theory. Phys. Rev. B 87, 205310 (2013)

    Article  ADS  Google Scholar 

  • Lüdge, K.: Modeling of quantum dot based laser devices. In: Lüdge, K. (ed.) Nonlinear Laser Dynamics—From Quantum Dots to Cryptography, chap. 1, pp. 3–34. Wiley, Weinheim (2012)

  • Lüdge, K., Schöll, E.: Quantum-dot lasers—desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron. 45(11), 1396–1403 (2009)

    Article  Google Scholar 

  • Neogi, A., Lee, C.W., Everitt, H.O., Kuroda, T., Tackeuchi, A., Yablonovitch, E.: Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 66, 153305 (2002). doi:10.1103/physrevb.66.153305

    Article  ADS  Google Scholar 

  • Ning, C.Z.: Semiconductor nanolasers. Phys. Status Solidi (b) 247(4), 774–778 (2010). doi:10.1002/pssb.200945436

    Google Scholar 

  • Ning, C.Z., Haken, H.: Elimination of variables in simple laser equations. Appl. Phys. B 55(2), 117–120 (1992). doi:10.1007/bf00324060

    Article  ADS  Google Scholar 

  • Shore, K.A.: Modulation bandwidth of metal-clad semiconductor nanolasers with cavity-enhanced spontaneous emission. Electron. Lett. 46(25), 1688–1689 (2010). doi:10.1049/el.2010.2535

    Article  Google Scholar 

  • Suhr, T., Gregersen, N., Yvind, K., Mørk, J.: Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission. Opt. Express 18(11), 11230–11241 (2010). doi:10.1364/oe.18.011230

    Article  ADS  Google Scholar 

  • Zhang, Q., Li, G., Liu, X., Qian, F., Li, Y., Sum, T.C., Lieber, C.M., Xiong, Q.: A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 5, 4953 (2014). doi:10.1038/ncomms5953

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by Deutsche Forschungsgemeinschaft in the framework of SFB 787, Project B2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Aust.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 15.

Guest edited by Julien Javaloyes, Weida Hu, Slawek Sujecki and Yuh-Renn Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aust, R., Kaul, T., Ning, CZ. et al. Modulation response of nanolasers: what rate equation approaches miss. Opt Quant Electron 48, 109 (2016). https://doi.org/10.1007/s11082-016-0378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0378-4

Keywords

Navigation