Skip to main content
Log in

Fishnet based metamaterial loaded THz patch antenna

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A fishnet based metamaterial (MTM) loaded rectangular microstrip patch antenna (RMPA) is proposed for THz applications. The negative refractive index of the MTM has been displayed at frequency range between 1.05 and 1.1 THz. This MTM can be used for improving the return loss, gain and radiation efficiency of RMPA. The return loss (S11), and gain are found as −57 and 3.57 dB, respectively. In addition, the bandwidth of −10 dB has been found as 8.2 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Balanis, C.A.: Antenna Theory: Analysis and Design. 3rd edn. John Wiley & Sons, Hoboken (2005)

    Google Scholar 

  • Bilotti, F., Nucci, L., Vegni, L.: An SRR-based microwave absorber. Microw. Opt. Technol. Lett. 48, 2171–2175 (2006)

    Article  Google Scholar 

  • Brown, E.R., Parker, C.D.: Radiation properties of a planar antenna on a photonic-crystal substrate. J. Opt. Soc. Am. B 10(2), 404–407 (1993)

    Article  ADS  Google Scholar 

  • Capolino, F.: Applications of Metamaterials. CRC Press, Boca Raton, FL (2009)

    Book  Google Scholar 

  • Chen, X.D., Grzegorczyk, T.M., Wu, B.I., Pacheco, J., Kong, J.A.: Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 016608 (2004)

    Article  ADS  Google Scholar 

  • Chen, X., Chen, J., Liu, C., Huang, K.: A genetic metamaterial and its application to gain improvement of a patch antenna. J. Electromagn. Waves Appl. 26, 1977–1985 (2012)

    Article  Google Scholar 

  • Danana, B., Choudhury, B., Jha, R. M.: Design of high gain microstrip antenna for THz wireless communication. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 3, 711–716 (2014)

    Google Scholar 

  • Dincer, F., Karaaslan, M., Unal, E., Delihacioglu, K., Sabah, C.: Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators. Prog. Electromagn. Res. 144, 123–132 (2014)

    Article  Google Scholar 

  • Ekmekci, E., Turhan-Sayan, E.: Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multilayer substrate. Appl. Phys. A Mater. 110, 189–197 (2013)

    Article  ADS  Google Scholar 

  • Gupta, K.C.: Broadbanding techniques for microstrip patch antennas—A review. Sci. Rep. no. 98, 1–30 (1988)

    Google Scholar 

  • Jha, K.R., Singh, G.: Dual-frequency terahertz rectangular microstrip patch antenna on photonic crystal substrate. Applied Electromagnetics Conference (AEMC), 1–3 (2009)

  • Jha, K.R., Singh, G.: Dual-band rectangular microstrip patch antenna at terahertz frequency for surveillance system. J. Comput. Electron. 9(1), 31–41 (2010)

    Article  Google Scholar 

  • Jin, D.L., Hong, J.S., Xiong, H.: A novel single sided wideband metamaterial. ACES J. 27(12), 971–976 (2012)

    Google Scholar 

  • Kildishev, A.V., Chettiar, U.K.: Cascading optical negative index metamaterials. Appl. Comput. Electromagn. Soc. J. 22, 172–183 (2007)

    Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: A perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402–207404 (2008)

    Article  ADS  Google Scholar 

  • Ma, Y., Zhang, H.-W., Li, Y., Wang, Y., Lai, W.: Terahertz sensing application by using fractal geometries of split-ring resonators. Progr. Electromagn. Res. 138, 407–419 (2013)

    Article  Google Scholar 

  • Majid, H.A., Abd Rahim, M.K., Masri, T.: Microstrip Antenna gain enhancement using left-handed metamaterial structure. Progr. Electromagn. Res. M. 8, 235–247 (2009)

    Article  Google Scholar 

  • Naoui, S., Latrach, L., Gharsallah, A.: Metamaterials microstrip patch antenna for wireless communication RFID technology. Microw. Opt. Technol. Lett. 57, 1060–1066 (2015)

    Article  Google Scholar 

  • Nejati, A., Sadeghzadeh, R.A., Geran, F.: Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency. Phys. B 449, 113–120 (2014)

    Article  ADS  Google Scholar 

  • Ozbay, E., Temelkuran, B., Bayindir, M.: Microwave applications of photonic crystals. Progr. Electromagn. Res. PIER 41, 185–209 (2003)

    Article  Google Scholar 

  • Pozar, D.M.: Microstrip antennas. IEEE Proc. 80, 79–91 (1992)

    Article  ADS  Google Scholar 

  • Pozar, D.M.: Considerations for millimeter wave printed antennas. IEEE Trans. Antennas Propag. 31(5), 740–747 (1983)

    Article  ADS  Google Scholar 

  • Sabah, C.: Microwave response of octagon-shaped parallel plates: low-loss metamaterial. Opt. Commun. 285, 4549–4552 (2012)

    Article  ADS  Google Scholar 

  • Sabah, C., Roskos, H.G.: Broadside-coupled triangular split-ring-resonators for terahertz sensing. Eur. Phys. J. Appl. Phys. 61, 103506 (2013)

    Article  Google Scholar 

  • Sabah, C., Thomson, M.D., Meng, F., Tzanova, S., Roskos, H.G.: Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: pass-bands and signatures of abnormal group velocities. J. Appl. Phys. 110, 064902 (2011)

    Article  ADS  Google Scholar 

  • Sabah, C., Turkmen-Kucuksari, O., Turhan-Sayan, G.: Metamaterial absorber-based sensor embedded into an X-band waveguide. Electron. Lett. 50(15), 1074–1076 (2014)

    Article  Google Scholar 

  • Schüßler, M., Mandel, C., Puentes, M., Jakoby, R.: Metamaterial inspired microwave sensors. IEEE Microw. Mag. 13, 57–68 (2012)

    Article  Google Scholar 

  • Smith, D.R., Vier, D.C., Kroll, N., Schultz, S.: Direct calculation of permeability and permittivity for a left-handed metamaterial. Appl. Phys. Lett. 77(14), 2246–2248 (2000)

    Article  ADS  Google Scholar 

  • Tao, H., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D., Padilla, W.J.: A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7181–7188 (2008)

    Article  ADS  Google Scholar 

  • Tao, H., Bingham, C.M., Pilon, D., Fan, K., Strikwerda, A.C., Shrekenhamer, D., Padilla, W.J., Zhang, X., Averitt, R.D.: A dual band terahertz metamaterial absorber. J. Phys. D Appl. Phys. 43, 225102 (2010)

    Article  ADS  Google Scholar 

  • Turkmen, O., Ekmekci, E., Turhan-Sayan, G.: Nested U-ring resonators: a novel multi-band metamaterial design in microwave region. IET Microw. Antennas Propag. 6, 1102–1108 (2012)

    Article  Google Scholar 

  • Turkmen, O., Turhan-Sayan, G., Ziolkowski, R.W.: Single, dual and triple-band metamaterial-inspired electrically small planar magnetic dipole antennas. Microw. Opt. Technol. Lett. 56, 83–87 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The work reported here was carried out at Middle East Technical University–Northern Cyprus Campus (METU–NCC). It is supported by METU–NCC under the Grant No. BAP-FEN-15-D-3 and partly supported by TUBITAK (Scientific and Technological Research Council of Turkey) under the Project No. 114F091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cumali Sabah.

Additional information

This article is part of the Topical Collection on TERA-MIR: Materials, Generation, Detection and Applications.

Guest Edited by Mauro F. Pereira, Anna Wojcik-Jedlinska, Renata Butkute, Trevor Benson, Marian Marciniak and Filip Todorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirmaci, Y.D., Akin, C.K. & Sabah, C. Fishnet based metamaterial loaded THz patch antenna. Opt Quant Electron 48, 168 (2016). https://doi.org/10.1007/s11082-016-0449-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0449-6

Keywords

Navigation