Skip to main content
Log in

About optical localization in photonic quasicrystals

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We employ the two stage cut and project scheme to generate a dodecagonal two-dimensional quasiperiodic structure. The finite-differences-time-domain method is applied to simulate the propagation of electromagnetic modes in the system. We compute the transmission coefficients as well as the inverse participation ratio for a quasicrystal consisting of dielectric cylindrical rods. We find that for a small crystal the band gap forms due to destructive interference between extended states. The quasiperiodic geometry exhibits modes with enhanced transmission coefficients. The inverse participation ratio analysis indicates that these modes are localized and that the localization length is estimated to be 0.3207 in the inverse units of a lattice characteristic length scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baake, M., Joseph, D., Schlottmann, M.: The root lattice \({\text{ D }}_4\) and planar quasilattices with octagonal and dodecagonal symmetry. Int. J. Mod. Phys. B 05, 1924 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  • Ben-Abraham, S.I., Alexander, Q.: Hybrid quasiperiodic-periodic structures constructed by projection in two stages. Acta Crystallogr. A63, 177–185 (2007)

    Article  ADS  Google Scholar 

  • Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Dal Negro, L., Oton, C.J., Gaburro, Z., Pavesi, L., Johnson, P., Lagendijk, A., Righini, R., Colocci, M., Wiersma, D.S.: Light transport through the band-edge states of Fibonacci quasicrystals. Phys. Rev. Lett. 90, 055501 (2003)

    Article  ADS  Google Scholar 

  • Della Villa, A., Enoch, S., Tayeb, G., Capolino, F., Pierro, V., Aldi, V.: Localized modes in photonic quasicrystals with Penrose-type lattice. Opt. Express 14(21), 10021 (2006)

    Article  ADS  Google Scholar 

  • Edagawa, K.: Photonic crystals, amorphous materials, and quasicrystals. Sci. Technol. Adv. Mater. 15, 034805 (2014)

    Article  Google Scholar 

  • Gellermann, W., Kohmoto, M., Sutherland, B., Taylor, P.C.: Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 72, 633 (1994)

    Article  ADS  Google Scholar 

  • Hattori, T., Tsurumachi, N., Kawato, S., Nakatsuka, H.: Photonic dispersion relation in a one-dimensional quasicrystal. Phys. Rev. B 50, R4220 (1994)

    Article  ADS  Google Scholar 

  • Janot, C.: Quasicrystals, 2nd edn. Clarendon Press, Oxford (1994)

    MATH  Google Scholar 

  • Jin, W., Ju, J., Ho, H.L., Hoo, Y.L., Zhang, A.: Photonic crystal fibers devices and applications. Front. Optoelectron. 6, 3–24 (2013)

    Article  Google Scholar 

  • Kohmoto, M., Sutherland, B., Iguchi, K.: Localization in optics: quasiperiodic media. Phys. Rev. Lett. 58, 23 (1987)

    Article  Google Scholar 

  • Neve-Oz, Y., Pollok, T., Burger, S., Golosovsky, M., Davidov, D.: Resonant transmission of electromagnetic waves through two-dimensional photonic quasicrystals. J. Appl. Phys. 107, 063105 (2010)

    Article  ADS  Google Scholar 

  • Oskooi, A.F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J.D., Johnson, S.G.: Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010)

    Article  ADS  MATH  Google Scholar 

  • Shechtman, D., Blech, J., Gratias, D., Cahn, J.W.: Metallic phase with long range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  ADS  Google Scholar 

  • Sheng, P.: Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  • Vardeny, Z.V., Nahata, A., Agrawal, A.: Optics of photonics quasicrystals. Nat. Photonics 7, 177–187 (2013)

    Article  ADS  Google Scholar 

  • Zhang, X., Zhang, Z.-Q., Chan, C.T.: Absolute photonic band gap in 12-fold symmetric photonic crystals. Phys. Rev. B 63, 081105 (2001)

    Article  ADS  Google Scholar 

  • Zoorob, M.E., Charleton, M.D.B., Parker, G.J., Baumberg, J.J., Netti, M.C.: Complete photonic band gap in 12-fold symmetric quasicrystals. Nature 404, 740743 (2000)

    ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Research Foundation (NRF) and the Department of Science and Technology (DST) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faris Mohammed.

Additional information

This article is part of the Topical Collection on Optical Wave and Waveguide Theory and Numerical Modelling, OWTNM’ 15.

Guest edited by Arti Agrawal, B.M.A. Rahman, Tong Sun, Gregory Wurtz, Anibal Fernandez and James R. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, F., Quandt, A. About optical localization in photonic quasicrystals. Opt Quant Electron 48, 380 (2016). https://doi.org/10.1007/s11082-016-0648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0648-1

Keywords

Navigation