Skip to main content
Log in

Light trapping in p-i-n superlattice based InGaN/GaN solar cells using photonic crystal

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The InGaN material system offers substantial potential in developing ultra-high efficiency solar cell devices due to its unique material properties. The paper proposes a solar cell design having p-i-n superlattice InxGa1−xN/GaN based active layer structure supported by photonic crystal (PhC) assembly at the top, with a periodic pattern extending from top anti-reflective coating (ARC) to inside the p-type GaN layer. The paper presents the optical study and optimization of all the required parameters, which helps in investigating the roles of different parts of the structure. The studies are performed at low Indium concentration (up to 20 %) as higher concentration of Indium in GaN is practically not feasible from growth and fabrication point of view. We have also analyzed how the performance varies with the depth of the PhC pattern. Absorption enhancement occurs as the combination of ARC and PhC structures acts as an impedance matching layer, also the incident light is coupled to the quasi guided modes of the PhC structure. Besides, PhC structure acts as a diffraction grating structure allows light to bend inside the active layers, not allowing it to leave the structure through reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anani, M., Abid, H., Chama, Z., Mathieu, C., Sayede, A., Khelifa, B.: InxGa1-xN refractive index calculations. Microelectron. J. 38, 262–266 (2007)

    Article  Google Scholar 

  • Berenger, J.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bermel, P., Luo, C., Zeng, L., Kimerling, L.C., Joannopoulos, J.D.: Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt. Express 15(25), 16986–17000 (2007)

    Article  ADS  Google Scholar 

  • Biswas, R., Ding, C.G., Puscasu, I., Pralle, M., McNeal, M., Daly, J., Greenwald, A., Johnson, E.: Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission. Phys. Rev. B 74(045107), 1–6 (2006)

    Google Scholar 

  • Brown, G., Ager, J., Walukiewicz, W., Wua, J.: Finite element simulations of compositionally graded InGaN solar cells. Sol. Energy Mater. Sol. Cells 94, 478–483 (2010)

    Article  Google Scholar 

  • Cai, X., Zeng, S., Zhang, B.: Fabrication and characterization of InGaN p-i-n homojunction solar cell. Appl. Phys. Lett. 95, 173504 (2009)

    Article  ADS  Google Scholar 

  • Dahal, R., Pantha, B., Li, J., Lin, J.Y., Jiang, H.X.: InGaN/GaN multiple quantum well solar cells with long operating wavelengths. Appl. Phys. Lett. 94(6), 063505 (2009)

    Article  ADS  Google Scholar 

  • Davydov, V.Y., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A.V., Aderhold, J., Semchinova, O., Graul, J.: Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap. Phys. Status Solidi B 229(3), R1–R3 (2002)

    Article  ADS  Google Scholar 

  • Feng, N.N., Zhou, G.R., Huang, W.: Space mapping technique for design optimization of antireflection coatings for photonic devices. J. Lightwave Technol. 21(1), 281–285 (2003)

    Article  ADS  Google Scholar 

  • Feng, N.N., Michel, J., Zeng, L., Liu, J., Hong, C.Y., Kimerling, L.C., Duan, X.: Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells. IEEE Trans. Electron Devices 54(8), 1926–1933 (2007)

    Article  ADS  Google Scholar 

  • Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 39). Progr. Photovolt. 20(1), 12–20 (2012)

    Article  Google Scholar 

  • Gupta, N.D., Janyani, V.: Study and possible modifications of various designs for photonic crystals based thin film solar cells. In: Varshney, S.K., Mondal, S. (eds.) IONS-Asia 6. IIT, Kharagpur (2014)

  • Gupta, N.D., Janyani, V.: Design and optimization of efficient photonic crystals diffraction grating based light trapping structure for GaAs thin film solar cell. J. Nanoelectron. Optoelectron. 11(4), 407–415 (2016)

    Article  Google Scholar 

  • Horng, R.H., Lin, S.T., Tsai, Y.L., Chu, M.T., Liao, W.Y., Wu, M.H., Lin, R.M., Lu, Y.C.: Improved conversion efficiency of GaN/InGaN thin-film solar cells. IEEE Electron Device Lett. 30(7), 724–726 (2009)

    Article  ADS  Google Scholar 

  • Jani, O., Ferguson, I., Honsberg, C., Kurtz, S.: Design and characterization of GaN/InGaN solar cells. Appl. Phys. Lett. 91(13), 132 117-1–132 117-3 (2007)

    Article  Google Scholar 

  • Janrao, N., Metya, S., Janyani, V.: New geometry of photonic crystal fiber for improved dispersion compensation. J. Mod. Opt. 60(6), 467–473 (2013)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D.: Photonic Crystals—Molding the Flow of Light, pp. 35–42. Princeton University Press, Princeton, NJ (1995)

    MATH  Google Scholar 

  • König, T.A.F., Ledin, P.A., Kerszulis, J., Mahmoud, M.A., El-Sayed, M.A., Reynolds, J.R., Tsukruk, V.V.: Electrically tunable plasmonic behavior of nanocube–polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 8(6), 6182–6192 (2014)

    Article  Google Scholar 

  • Kushwaha, A., Mahala, P., Dhanavantri, C.: Optimization of p-GaN/InGaN/n-GaN double heterojunction p-i-n solar cell for high efficiency: simulation approach. Int. J. Photoenergy 2014, 819637 (2014)

    Article  Google Scholar 

  • Lobanova, A.V., Kolesnikova, A.L., Romanov, A.E., Karpov, S.Y., Rudinsky, M.E., Yakovlev, E.V.: Mechanism of stress relaxation in (0001) InGaN/GaN via formation of V-shaped dislocation half-loops. Appl. Phys. Lett. 103(15), 152106 (2013)

    Article  ADS  Google Scholar 

  • Mahala, P., Singh, S., Pal, S., Singh, K., Chauhan, A., Kumar, P., Parjapat, P., Kushwaha, B.K., Ray, A., Jani, O., Dhanavantri, C.: Fabrication and characterization of GaN/InGaN MQW solar cells. Appl. Phys. A 122, 1–6 (2016)

    Article  Google Scholar 

  • Muth, J.F., Lee, J.H., Shmagin, I.K., Kolbas, R.M., Casey Jr., H.C., Keller, B.P., Mishra, U.K., DenBaars, S.P.: Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 71, 2572–2574 (1997)

    Article  ADS  Google Scholar 

  • Nawaz, M., Ahmad, A.: A TCAD-based modeling of GaN/InGaN/Si solar cells. Semicond. Sci. Technol. 27, 035019 (2012)

    Article  ADS  Google Scholar 

  • Nelson, J.: The Physics of Solar Cell, pp. 7–15. Imperial College Press, London (2008)

    Google Scholar 

  • Park, Y., Drouard, E., El Daif, O., Letartre, X., Viktorovitch, P., Fave, A., Kaminski, A., Lemiti, M., Seassal, C.: Absorption enhancement using photonic crystals for silicon thin film solar cells. Opt. Express 17(16), 14312–14321 (2009)

    Article  ADS  Google Scholar 

  • Ravindra, N., Ganapathy, P., Choi, J.: Energy gap–refractive index relations in semiconductors—an overview. Infrared Phys. Technol. 50, 21–29 (2007)

    Article  ADS  Google Scholar 

  • Sheu, J., Yang, C., Tu, S., Chang, K., Lee, M., Lai, W., Peng, L.: Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers. IEEE Electron Device Lett. 30(3), 225–227 (2009)

    Article  ADS  Google Scholar 

  • Wang, X., Khan, M., Gray, J.L., Alam, M.A., Lundstrom, M.S.: Design of GaAs solar cells operating close to the Shockley–Queisser limit. IEEE J. Photovolt. 3(2), 737–744 (2013)

    Article  Google Scholar 

  • Weimann, N.G., Eastman, L.F., Doppalapudi, D., Ng, H.M., Moustakas, T.D.: Scattering of electrons at threading dislocations in GaN. J. Appl. Phys. 83(7), 3656–3659 (1998)

    Article  ADS  Google Scholar 

  • Wu, J., Walukiewicz, W.: Band gaps of InN and group-III nitride alloys. Superlattices Microstruct. 34, 63–75 (2003)

    Article  ADS  Google Scholar 

  • Wu, J., Walukiewicz, W., Yu, K.M., Ager III, J.W., Haller, E.E., Lu, H., Schaff, W.J., Saito, Y.A.N.Y.: Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80(21), 3967–3969 (2002)

    Article  ADS  Google Scholar 

  • Yang, C.C., Sheu, J.K., Liang, X.W., Huang, M.S., Lee, M.L., Chang, K.H., Tu, S.J., Huang, F.W., Lai, W.C.: Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers. Appl. Phys. Lett. 97(2), 021113 (2010)

    Article  ADS  Google Scholar 

  • Zanotto, S., Liscidini, M., Andreani, L.C.: Light trapping regimes in thin-film silicon solar cells with a photonic pattern. Opt. Express 18(5), 4260–4274 (2010)

    Article  ADS  Google Scholar 

  • Zheng, X., Horng, R., Wuu, D.S., Chu, M., Liao, W., Wu, M., Lin, R., Lu, Y.: High-quality InGaN/GaN heterojunctions and their photovoltaic effects. Appl. Phys. Lett. 93, 261108 (2008)

    Article  ADS  Google Scholar 

  • Zhou, D., Biswas, R.: photonic crystals enhanced light trapping in thin film solar cells. J. Appl. Phys. 103, 093102 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the DST-SERI Project ESCPC (Grant FR/203C) for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Deep Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N.D., Janyani, V. & Mathew, M. Light trapping in p-i-n superlattice based InGaN/GaN solar cells using photonic crystal. Opt Quant Electron 48, 502 (2016). https://doi.org/10.1007/s11082-016-0775-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0775-8

Keywords

Navigation