Skip to main content
Log in

Realization of mode independent multichannel transmission filter by controlling the photon localization in symmetric cavities

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Modern optical communication system requires multiple channel transmission in different spectral band for different applications. Here we are proposing a microresonator structure for closely spaced, mode independent multiple channel transmission in 3rd transmission window by controlling the localization of photons in its cavity. To design the proposed structure, the spectral filtering properties of a single cavity planar microresonator are studied initially. In conventional multilayer dielectric filter, the localization of light in the microcavity is generally controlled by controlling the number of layers. Here we have shown that application of electric field across the structure, designed with suitable materials can also affect the localization of light in the cavity as well as the Q values of the transmission spectra. The mode independent characteristic of the structure is found from the study of its transmittance characteristics at different angle of incidence of light. It is found that the results of single cavity structure hold well for multicavity resonator structure also, in the regime of optical communication wavelength range. A method to increase the number of transmission channels is also proposed here keeping the fabrication perspective in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Armani, A.M., Vahala, K.J.: Heavy water detection using ultra-high-Q microcavities. Opt. Lett. 31(12), 1896–1898 (2006)

    Article  ADS  Google Scholar 

  • Bandyopadhyay, R., Chakraborty, R.: Design of tunable transmission filter using one-dimensional defective photonic crystal structure containing electro-optic material. Opt. Eng. 54(11), 117105 (2015)

    Article  ADS  Google Scholar 

  • Ctistis, G., Yuce, M., Hartsuiker, A., Claudon, J., Bazin, M., Gerard, J.M., Vos, W.L.: Ultimate fast optical switching of a planar microcavity in the telecom wavelength range. Appl. Phys. Lett. 98(16), 161114 (2011)

    Article  ADS  Google Scholar 

  • Enami, Y., Yuan, B., Tanaka, M., Luo, J., Jen, A.Y.: Electro-optic polymer/TiO2 multilayer slot waveguide modulators. Appl. Phys. Lett. 101, 123509 (2012)

    Article  ADS  Google Scholar 

  • Enami, Y., Nakamura, H., Luo, J., Jen, A.K.Y.: Analysis of efficiently poled electro-optic polymer/TiO2 vertical slot waveguide modulators. Opt. Commun. 362, 77–80 (2016)

    Article  ADS  Google Scholar 

  • Gerken, M., Miller, D.A.: Multilayer thin-film stacks with step like spatial beam shifting. J. Lightwave Technol. 22(2), 612–618 (2004)

    Article  ADS  Google Scholar 

  • Ghatak, A., Thyagarajan, K.: Optical Electronics, pp. 46–48. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  • Harding, P.J., Eusar, T.G., Nowicki, B.Y.R., Gerad, J.M., Vos, W.L.: Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities. arXiv:0706.2385 (2007)

  • Havermeyer, F., Liu, W., Moser, C., Psaltis, D., Steckman, G.J.: Volume holographic grating-based continuously tunable optical filter. Opt. Eng. 43(9), 2017–2021 (2004)

    Article  ADS  Google Scholar 

  • Hung, H.C., Wu, C.J., Yang, T.J., Chang, S.J.: Analysis of tunable multiple-filtering property in a photonic crystal containing strongly extrinsic semiconductor. J. Electromagn. Waves Appl. 25(14–15), 2089–2099 (2011)

    Article  Google Scholar 

  • Li, C., Liu, S., Kong, X., Zhang, H., Bian, B., Zhang, X.: A novel comb-like plasma photonic crystal filter in the presence of evanescent wave. IEEE Trans. Plasma Sci. 39(10), 1969–1973 (2011)

    Article  ADS  Google Scholar 

  • Lin, W.H., Wu, C.J., Yang, T.J., Chang, S.J.: Terahertz multichanneled filter in a superconducting photonic crystal. Opt. Express 18(26), 27155–27166 (2010)

    Article  ADS  Google Scholar 

  • Martini, F.D., Jacobovitz, G.R.: Anomalous spontaneous–stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity. Phys. Rev. Lett. 60(17), 1711 (1988)

    Article  ADS  Google Scholar 

  • Noble, E., Nair, R.V., Jagtap, B.N.: Interaction between dual cavity modes in a planar photonic microcavity. J. Mod. Opt. 63, 1981–1991 (2016)

    Article  ADS  Google Scholar 

  • Nowicki, B.Y.R., Claudon, J., Bockler, C., Reitzenstein, S., Kamp, M., Morand, A., Forchel, A., Gerard, J.M.: High Q whispering gallery modes in GaAs/AlAs pillar microcavities. Opt. Express 15(25), 17291–17304 (2007)

    Article  ADS  Google Scholar 

  • Orfanidis, S.J.: Electromagnetic Waves and Antennas. Rutgers University, New Brunswick (2002)

    Google Scholar 

  • Qiao, F., Zhang, C., Wan, J., Zi, J.: Photonic quantum-well structures: multiple channeled filtering phenomena. Appl. Phys. Lett. 77(23), 3698–3700 (2000)

    Article  ADS  Google Scholar 

  • Qiu, F., Spring, A.M., Maeda, D., Ozawa, M., Odoi, K., Aoki, I., Otomo, A., Shiyoshi Yokoyama, S.: TiO2 ring-resonator-based EO polymer modulator. Opt. Express 22(12), 14101–14107 (2014)

    Article  ADS  Google Scholar 

  • Reitzenstein, S., Hofmann, C., Gorbunov, A., Straub, M., Kwon, S.H., Schneider, C., Loffler, A., Hofling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90(25), 1109 (2007)

    Article  Google Scholar 

  • Rosenkrantz, E., Arnon, S.: Tunable electro-optic filter based on metal-ferroelectric nanocomposite for VLC. Opt. Lett. 39(16), 4954–4957 (2014)

    Article  ADS  Google Scholar 

  • Saleh, A., Stone, J.: Two-stage Fabry–Perot filters as demultiplexers in optical FDMA LANs. J. Lightwave Technol. 7, 323–330 (1989)

    Article  ADS  Google Scholar 

  • Scholtz, L., Korcekl, D., Ladayni, L., Mullerova, J.: Tunable thin film filters for the next generation PON stage 2 (NG-PON2). In: ELEKTRO, 2014. IEEE (2014)

  • Vahala, K.J.: Optical microcavities. Nature 424(6950), 839–846 (2003)

    Article  ADS  Google Scholar 

  • Wang, Q., Loh, T.-H., Ting Ng, D.K., Ho, S.H.: Design and analysis of optical coupling between silicon nanophotonic waveguide and standard single-mode fiber using an integrated asymmetric super-GRIN lens. IEEE J. Sel. Top. Quantum Electron. 17(3), 581–589 (2011)

    Article  Google Scholar 

  • Wu, C.J., Liao, J.J., Chang, T.W.: Tunable multilayer Fabry–Perot resonator using electro-optical defect layer. J. Electromagn. Waves Appl. 24(4), 531–542 (2010)

    Google Scholar 

  • Wu, C.J., Lee, M.H., Jian, J.Z.: Design and analysis of multichannel transmission filter based on the single-negative photonic crystal. Prog. Electromagn. Res. 136, 561–578 (2013)

    Article  Google Scholar 

  • Yao, P., Rao, V.M., Hughes, S.: On-chip single photon sources using planar photonic crystals and single quantum dot. Laser Photonics Rev. 4(4), 499–516 (2010)

    Article  Google Scholar 

  • Yeh, P.: Optical Waves in Layered Media. Wiley, New York (1988)

    Google Scholar 

Download references

Acknowledgements

The first author (RB) acknowledges the TEQIP Phase II, University of Calcutta for funding his scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, R., Chakraborty, R. Realization of mode independent multichannel transmission filter by controlling the photon localization in symmetric cavities. Opt Quant Electron 49, 233 (2017). https://doi.org/10.1007/s11082-017-1073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1073-9

Keywords

Navigation