Skip to main content
Log in

Bright–dark solitary wave and elliptic function solutions of unstable nonlinear Schrödinger equation and their applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, we study the unstable nonlinear Schrödinger equation (UNLSE). Analytically by modified extended direct algebraic method, which describes the disturbances in time evolution of marginally stable or unstable media. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave and elliptic function solutions of UNLSE. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomenas of this unstable equation. Moreover, we also present the formation conditions of the bright and dark solitons of UNLSE. The obtained results and computational work shows the power and effectiveness of this method. Many other such types of nonlinear evolution equations arising in engineering, applied sciences and nonlinear optics can also be solved by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Springer, New York (2013)

    MATH  Google Scholar 

  • Ali, A., Seadawy, A., Dianchen, L.: Soliton solutions of the nonlinear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysisn. Opt. Int. J. Light Electron Opt. 145, 79–88 (2017)

    Article  Google Scholar 

  • Arshad, M., Seadawy, A.R., Lu, D., Wang, J.: Travelling wave solutions of generalized coupled ZakharovKuznetsov and dispersive long wave equations. Results Phys. 6, 1136–1145 (2016)

    Article  ADS  Google Scholar 

  • Arshad, M., Seadawy, A., Lu, D., Wang, J.: Travelling wave solutions of Drinfel’d–Sokolov–Wilson, Whitham–Broer–Kaup and (2+1)-dimensional Broer–Kaup–Kupershmit equations and their applications. Chin. J. Phys. 55, 780–797 (2017a)

    Article  Google Scholar 

  • Arshad, M., Seadawy, A., Lu, D.: Exact bright–dark solitary wave solutions of the higher-order cubic–quintic nonlinear Schrödinger equation and its stability. Opt. Int. J. Light Electron Opt. 138, 40–49 (2017b)

    Article  Google Scholar 

  • Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water. J. Fluid Mech. 27, 417–430 (1967)

    Article  ADS  MATH  Google Scholar 

  • Biswas, A., Mirzazadeh, M., Eslami, M., Zhou, Q., Bhrawy, A., Belic, M.: Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. Optik Int. J. Light Electron Opt. 127(18), 7250–7257 (2016)

    Article  Google Scholar 

  • Dianchen, L., Seadawy, A., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Opt. Int. J. Light Electron Opt. 140, 136–144 (2017)

    Article  Google Scholar 

  • Ekici, M., Zhou, Q., Sonmezoglu, A., Mirzazadeh, M.: Exact solitons of the coupled sine-Gordon equation in nonlinear system. Opt. Int. J. Light Electron Opt. 136, 435–444 (2017a)

    Article  Google Scholar 

  • Ekici, M., Zhou, Q., Sonmezoglu, A., Moshokoa, S.P., Zaka Ullah, M., Biswas, A., Belic, M.: Optical solitons with DWDM technology and four-wave mixing. Superlattices Microstruct. 107, 254–266 (2017b)

    Article  ADS  Google Scholar 

  • Ekici, M., Zhou, Q., Sonmezoglu, A., Moshokoa, S.P., Zaka Ullah, M., Biswas, A., Belic, M.: Solitons in magneto-optic waveguides by extended trial function scheme. Superlattices Microstruct. 107, 197–218 (2017c)

    Article  ADS  Google Scholar 

  • Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Zaka Ullah, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Nematicons in liquid crystals by extended trial equation method. J. Nonlinear Opt. Phys. Mater. 26(01), 1750005 (2017d)

    Article  ADS  Google Scholar 

  • Eslami, M., Mirzazadeh, M., Fathi Vajargah, B., Biswas, A.: Optical solitons for the resonant nonlinear Schrödinger’s equation with time-dependent coefficients by the first integral method. Opt. Int. J. Light Electron Opt. 125(13), 3107–3116 (2014)

    Article  Google Scholar 

  • Jawad, A.J.M., Mirzazadeh, M., Zhou, Q., Biswas, A.: Optical solitons with anti-cubic nonlinearity using three integration schemes. Superlattices Microstruct. 105, 1–10 (2017)

    Article  ADS  Google Scholar 

  • Kalogiratou, Z., Monovasilis, T., Simos, T.E.: Numerical solution of the two dimensional time-independent Schrödinger equation with exponential-fitting methods. J. Math. Chem. 37(3), 271–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Manalan, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the \(tan(\Phi (\xi )/2)\)-expansion method. Optik 127, 4222–4245 (2016)

    Article  ADS  Google Scholar 

  • Min, L., Tao, X., Lei, W.: Dynamical behaviors and soliton solutions of a generalized higher-order nonlinear Schrödinger equation in optical bers. Nonlinear Dyn. 80, 1451–1461 (2015)

    Article  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Biswas, A.: Dispersive optical solitons by Kudryashovs method. Optik 125, 6874–06880 (2014)

    Article  ADS  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Sonmezoglu, A., Eslami, M., Zhou, Q., Kara, A.H., Milovic, D., Majid, F.B., Biswas, A., Belic, M.: Optical solitons with complex Ginzburg–Landau equation. Nonlinear Dyn. 85(3), 1979–2016 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Zhou, Q., Biswas, A.: Exact solitons to generalized resonant dispersive nonlinear Schrödingers equation with power law nonlinearity. Optik 130, 178–183 (2017)

    Article  ADS  Google Scholar 

  • Nickel, J., Serov, V.S., Schurmann, H.W.: Some elliptic travelling wave solution to the Novikov–Veselov equation. Proc. Prog. Electromagn. Res. Symp. 61, 323–331 (2006)

    Article  Google Scholar 

  • Pawlik, M., Rowlands, G.: The propagation of solitary waves in piezoelectric semiconductors. J. Phys. C 8, 1189–1204 (1975)

    Article  ADS  Google Scholar 

  • Pedlosky, V.E.: Finite-amplitude baroclinic waves. J. Atmos. Sci. 27, 15–30 (1970)

    Article  ADS  Google Scholar 

  • Sakaguchi, H., Higashiuchi, T.: Two-dimensional dark soliton in the nonlinear Schrödinger equation. Phys. Lett. A 359, 647–651 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Seadawy, A.R.: Approximation solutions of derivative nonlinear Schrödinger equation with computational applications by variational method. Eur. Phys. J. Plus 130, 182 (2015)

    Article  Google Scholar 

  • Seadawy, A.: The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrödinger equation and its solutions. Opt. Int. J. Light Electron Opt. 139, 31–43 (2017a)

    Article  Google Scholar 

  • Seadawy, A.: Modulation instability analysis for the generalized derivative higher order nonlinear Schröodinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31(14), 1353–1362 (2017b)

    Article  MathSciNet  Google Scholar 

  • Seadawy, A.R., Lu, D.: Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrödinger equation and its stability. Results Phys. 7, 43–48 (2017)

    Article  Google Scholar 

  • Sinha, D., Ghosh, P.K.: Integrable nonlocal vector nonlinear Schrödinger equation with self-induced parity-time-symmetric potential. Phy. Lett. A 381, 124–128 (2017)

    Article  ADS  MATH  Google Scholar 

  • Sonmezoglu, A., Yao, M., Ekici, M., Mirzazadeh, M., Zhou, Q.: Explicit solitons in the parabolic law nonlinear negative-index materials. Nonlinear Dyn. 88(1), 595–607 (2017)

    Article  MATH  Google Scholar 

  • Tebue, E.T., Djoufack, Z.I., Donfack, E.F., Jiotsa, A.K., Kofan, T.C.: Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method. Optik 127, 11124–11130 (2016)

    Article  ADS  Google Scholar 

  • Xia, H., Kabos, P., Patton, C.E., Ensle, H.E.: Decay properties of microwave magnetic envelope solitons in yttrium iron garnet films. Phys. Rev. B 55, 15018–15025 (1997)

    Article  ADS  Google Scholar 

  • Yomba, E.: Jacobi elliptic function solutions of the generalized Zakharov-Kuznetsov equation with nonlinear dispersion and t-dependent coefficients. Phys. Lett. A 374, 1611–1615 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908–914 (1972)

    ADS  Google Scholar 

  • Zhai, J., Zheng, B.: On the local well-posedness for the nonlinear Schrödinger equation with spatial variable coecient. J. Math. Anal. Appl. 445, 81–96 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, L., Lin, Y., Liu, Y.: New solitary wave solutions for two nonlinear evolution equations. Comput. Math. Appl. 67, 1595–1606 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Q., Mirzazadeh, M.: Analytical solitons for Langmuir waves in plasma physics with cubic nonlinearity and perturbations. Z. Naturforsch. A 71(9), 807–815 (2016)

    ADS  Google Scholar 

  • Zhou, Y., Wang, M., Miao, T.: The periodic wave solutions and solitary for a class of nonlinear partial differential equation. Phys. Lett. A 323, 77–88 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aly R. Seadawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Seadawy, A.R. & Arshad, M. Bright–dark solitary wave and elliptic function solutions of unstable nonlinear Schrödinger equation and their applications. Opt Quant Electron 50, 23 (2018). https://doi.org/10.1007/s11082-017-1294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1294-y

Keywords

Navigation