Skip to main content
Log in

Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers–Huxley equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, we study the time fractional generalized BurgersHuxley equation with Riemann–Liouville derivative via Lie symmetry analysis and power series expansion method. We transform the governing equation to nonlinear ordinary differential equation of fractional order using its Lie point symmetries. In the reduced equation, the derivative is in Erdelyi–Kober sense. We apply power series technique to derive explicit solutions for the reduced equation. The convergence of the obtained power series solutions are also derived. Some interesting Figures for the obtained solutions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alquran, M., Al-Khaled, K., Sivasundaram, S., Jaradat, H.M.: Mathematical and numerical study of existence of bifurcations of the generalized fractional BurgersHuxley equation. Nonlinear Stud. 24(1), 235–244 (2017)

    MathSciNet  MATH  Google Scholar 

  • Az-Zobi, E.: On the reduced differential transform method and its application to the generalized BurgersHuxley equation. Appl. Math. Sci. 8(177), 8823–8831 (2014)

    Google Scholar 

  • Baleanu, D., Inc, M., Yusuf, A., Aliyu, A.I.: Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov–Kuznetsov equation. Nonlinear Anal. Model. Control 22(6), 861–876 (2017)

    Article  MathSciNet  Google Scholar 

  • Baleanu, D., Inc, M., Yusuf, A., Aliyu, A.I.: Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Commun. Nonlinear Sci. Numer. Simul. 59, 222–234 (2018)

    Article  MathSciNet  Google Scholar 

  • Batiha, B., Noorani, M.S.M., Hashim, I.: Application of variational iteration method to the generalized BurgersHuxley equation. Chaos Solitons Fract. 36(3), 660–663 (2008)

    Article  MATH  ADS  Google Scholar 

  • Biswas, A., Suarez, P.: Exact 1-soliton solution of the zakharov-kuznetsov equation in plasmas with power law nonlinearity. Appl. Math. Comput. 217(17), 7372–7375 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Biswas A, Morris R, Kara AH (2013) Soliton solution and conservation laws of the Zakharov-Kuznetsov equation in plasmas with power law nonlinearity

  • Biswas, A., Mirzazadeh, M., Eslami, M., Milovic, D.: Solitons in optical metamaterials by functional variable method and first integral approach. Frequenz 68(11–12), 525–530 (2014)

    ADS  Google Scholar 

  • Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  • Cenesiz, Y., Baleanu, D., Kurt, A., Tasbozan, O.: New exact solutions of Burgers’ type equations with conformable derivative. Waves Random Complex Media 27, 103–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Craddock, M., Lennox, K.: Lie symmetry methods for multi-dimensional parabolic PDEs and diffusions. J. Differ. Equ. 252, 56–90 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Diethelm, K.: The analysis of fractional differential equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  • Ekici, M., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives. Optik 127, 10659–10669 (2016)

    Article  ADS  Google Scholar 

  • Ekici, M., Mirzazadeh, M., Eslami, M.: Optical solitons with Biswas–Milovic equation for power law and dual-power law nonlinearities. Nonlinear Dyn. 83(1–2), 731–738 (2017)

    MathSciNet  MATH  Google Scholar 

  • Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  Google Scholar 

  • Eslami, M., Mirzazadeh, M.: Trial solution technique to chiral nonlinear Schrodinger’s equation in (1 + 2)-dimensions. Nonlinear Dyn. 85(2), 813–816 (2016)

    Article  MathSciNet  Google Scholar 

  • Eslami, M., Rezazadeh, H.: The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Eslami, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M., Ekici, M., Mirzazadeh, M.: Optical soliton pertubation with fractional temporal evolution by first integral method with conformabal fractional derivatives. Optik 127(22), 10659–10669 (2016)

    Article  ADS  Google Scholar 

  • Eslami, M., Khodadad, F.S., Nazari, F., Rezazadeh, H.: The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative. Opt. Quantum Electron. 49(12) (2017a). https://doi.org/10.1007/s11082-017-1224-z

  • Eslami, M., Rezazadeh, H., Rezazadeh, M., Mosavei, S.S.: Exact solutions to the space-time fractional Schrödinger–Hirota equation and the space-time modified KDV-Zakharov–Kuznetsov equation. Opt. Quantum Electron. 49(8) (2017b). https://doi.org/10.1007/s11082-017-1112-6

  • Galaktionov, V.A., Svirshchevskii, S.R.: Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman and Hall/CRC, Boca Raton, Florida (2006)

    MATH  Google Scholar 

  • Gazizov, R.K., Kasatkin, A.A., Lukashcuk, S.Y.: Continuous transformation groups of fractional differential equations. Vestnik USATU 9, 125–135 (2007)

    Google Scholar 

  • Gazizov, R.K., Kasatkin, A.A., Lukashcuk, S.Y.: Symmetry properties of fractional diffusion equations. Phys. Scr. 136, 014–016 (2009)

    Google Scholar 

  • Guo, S., Mei, L.Q., Li, Y., Sun, Y.F.: The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys. Lett. A 376, 407–411 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Hashim, I., Noorani, M.S.M., Al-Hadidi, M.R.S.: Solving the generalized BurgersHuxley equation using the Adomian decomposition method. Math. Comput. Model. 43, 1404–1411 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Waves Random Complex Media 27, 628–636 (2017)

    Article  MathSciNet  Google Scholar 

  • Hosseini, K., Manafian, J., Samadani, F., Foroutan, M., Mirzazadeh, M., Zhou, Q.: Resonant optical solitons with perturbation terms and fractional temporal evolution using improved tan (ϕ (η)/2)-expansion method and exp function approach. Optik 158, 933–939 (2018)

    Article  ADS  Google Scholar 

  • Ibragimov, N.H.: Handbook of Lie Group Analysis of Differential Equations, vol. 1. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  • Ibragimov, N.H.: Handbook of Lie Group Analysis of Differential Equations, vol. 2. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  • Ibragimov, N.H.: Handbook of Lie Group Analysis of Differential Equations, vol. 3. CRC Press, Boca Raton (1996)

    Google Scholar 

  • Inc, M., Aliyu, A.I., Yusuf, A.: Dark optical, singular solitons and conservation laws to the nonlinear Schrödinger’s equation with spatio-temporal dispersion. Modern Phys Lett B 31(14) (2017). https://doi.org/10.1142/S0217984917501639

  • Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D.: Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: lie symmetry analysis, explicit solutions and convergence analysis. Phys. A 493, 94–106 (2018a)

    Article  MathSciNet  Google Scholar 

  • Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D.: Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations. Phys. A (2018b). https://doi.org/10.1016/j.physa.2017.12.119

    MathSciNet  Google Scholar 

  • Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of non differentiable functions further results. Comput. Math Appl. 51, 1367–1376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Jumarie, G.: Cauchy’s integral formula via the modified Riemann–Liouville derivative for analytic functions of fractional order. Appl. Math. Lett. 23, 1444–1450 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Kiryakova, V.: Generalised Fractional Calculus and Applications. Pitman Research Notes in Mathematics, vol. 301. Longman, London (1994)

    Google Scholar 

  • Kiryakova, V.: Generalised Fractional Calculus and Applications. Pitman Research Notes in Mathematics, vol. 301. Longman, London (1996)

    Google Scholar 

  • Lie, S.: On integration of a class of linear partial differential equations by means of definite integrals. Arch. Math. Log. 6(3), 328–368 (1881)

    MATH  Google Scholar 

  • Liu, H.Z.: Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations. Stud. Appl. Math. 131, 317–330 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, B.: Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys. Lett. A 376, 2045–2048 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Vajargah, B.F., Biswas, A.: Application of the first integral method to fractional partial differential equations. Indian J. Phys. 88(2), 177–184 (2014)

    Article  ADS  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80(1–2), 387–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Biswas, A.: Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion. Nonlinear Dyn. 84(2), 669–676 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Zerrad, E.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81(4), 1933–1949 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Neirameh, A., Eslami, M.: An analytical method for finding exact solitary wave solutions of the coupled (2 + 1)-dimensional Painlevé Burgers equation, Scientia Iranica. Trans. B Mech. Eng. 24(2), 715–726 (2017)

    Google Scholar 

  • Olver, P.J.: Application of Lie Group to Differential Equation. Springer, New York (1986)

    Book  Google Scholar 

  • Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  • Qin, C.Y., Tian, S.F., Wang, X.B., Zhang, T.T.: Lie symmetries, conservation laws and explicit solutions for time fractional Rosenau–Haynam equation. Commun. Theor. Phys. 67, 157–165 (2017)

    Article  MATH  ADS  Google Scholar 

  • Rudin, W.: Principles of Mathematic Analysis. China Machine Press, Beijing (2004)

    Google Scholar 

  • Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations. J. Math. Anal. Appl. 393, 341–347 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Singla, K., Gupta, R.K.: Space-time fractional nonlinear partial differential equations: symmetry analysis and conservation laws. Nonlinear Dyn. (2017). https://doi.org/10.1007/s11071-017-3456-7

    MathSciNet  MATH  Google Scholar 

  • Sonomezoglu, A., Eslami, M., Zhou, Q., Zerrad, E., Biswas, A., Belic, M., Ekici, M., Mirzazadeh, M.: Optical solitons in nano-fibers with fractional temporal evolution. J. Comput. Theor. Nanosci. 13(8), 5361–5374 (2016a)

    Article  Google Scholar 

  • Sonomezoglu, A., Ortakaya, S., Eslami, M., Biswas, A., Mirzazadeh, M., Ekici, M.: Solitons solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics. Eur. Phys. J. Plus 131(6), 166–177 (2016b)

    Google Scholar 

  • Tchier, F., Yusuf, A., Aliyu, A.I., Inc, M.: Soliton solutions and conservation laws for lossy nonlinear transmission line equation. Superlattices Microstruct. 107, 320–336 (2017)

    Article  ADS  Google Scholar 

  • Tian, S.F., Zhang, H.Q.: On the integrability of a generalized variable-coefficient Kadomtsev–Petviashvili equation. J. Phys. A Math. Theor. 45 (2012). https://doi.org/10.1088/1751-8113/45/5/055203

  • Vajargah, B.F., Mirzazadeh, M., Eslami, M., Biswas, A.: Solitons and periodic solutions to a couple of fractional nonlinear evolution equations. Pramana 82(3), 465–476 (2014)

    Article  ADS  Google Scholar 

  • Wang, G.W., Liu, X.Q., Zhang, Y.Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2321–2326 (2013a)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Wang, G., Liu, X., Zhang, Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun Nonlinear Sci Numer Simulat 18, 2321–2326 (2013b)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Wang, G., Kara, A.H., Fakhar, K.: Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation. Nonlinear Dyn. 82, 281–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: Analytic study on Burgers, Fisher, Huxley equations and combined forms of these equations. Appl. Math. Comput. 195(2), 754–761 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, G., Lee, E.W.M.: Fractional variational iteration method and its application. Phys. Lett. A 374, 2506–2509 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Zerrad, E., Biswas, A., Kohl, R., Milovic, D.: Optical solitons by he’s variational principle in a non-kerr law media. J. Infrared Millim. Terahertz Waves 30(5), 526–537 (2009)

    Article  Google Scholar 

  • Zerrad, E., Biswas, A., Song, M., Ahmed, B.: Domain wall and bifurcation analysis of the Klein-Gordon Zakharov–Kuznetsov equation in (1 + 2)-dimensions with power law nonlinearity. Chaos 23(3) (2013). https://doi.org/10.1063/1.4816346

  • Zhang, S., Zhang, H.Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069–1073 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M., Ekici, M., Mirzazadeh, M.: Solitons in optical metamaterials with fractional temporal evolution. Optik 127(22), 10879–10897 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullahi Yusuf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inc, M., Yusuf, A., Aliyu, A.I. et al. Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers–Huxley equation. Opt Quant Electron 50, 94 (2018). https://doi.org/10.1007/s11082-018-1373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1373-8

Keywords

Navigation