Skip to main content
Log in

High-birefringence hollow-core anti-resonant THz fiber

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A novel high-birefringence hollow-core anti-resonant THz fiber is proposed in this paper. This fiber has a simple structure which consists of only ten Topas tubes. High birefringence is achieved by introducing two large tubes. The first two resonant frequencies are 1.44 and 2.88 THz by fixing tube thickness at 0.09 mm, which makes two low-loss transmission windows exist in the frequency range from 0.8 to 3.0 THz. The lowest loss is 2.10 dB/m occurring at 1.2 THz in the first transmission window and 1.68 dB/m at 2.34 THz in the second transmission window. By optimizing the structure parameters, high birefringence above 7 × 10−4 in the frequency range from 1.0 to 1.24 THz are obtained. The highest birefringence is up to 8.7 × 10−4 at 1.04 THz. Birefringence can be further increased to the order of 10−3 by adjusting the structure parameters at the cost of loss increasing and the bandwidth decreasing. In addition, bent performance of this fiber is also discussed. In addition, this fiber can keep good performance when it is bent for x-direction. At the bend radius of 15 cm, the loss and birefringence has a more slightly change in the first transmission window than the second transmission window. The first transmission window own much better bent-insensitive characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, Cambridge (2007)

    MATH  Google Scholar 

  • Barh, A., Pal, B.P., Agrawal, G.P., Varshney, R.K.: Specialty fibers for terahertz generation and transmission: a review. IEEE J. Sel. Top. Quantum Electron. 22, 365–379 (2015)

    Article  Google Scholar 

  • Barh, A., Varshney, R.K., Pal, B.P., Agrawal, G.P.: Design of a polymer-based hollow-core bandgap fiber for low-loss terahertz transmission. IEEE Photonics Technol. Lett. 28, 1703–1706 (2016)

    Article  ADS  Google Scholar 

  • Busch, S.F., Weidenbach, M., Balzer, J.C., Koch, M.: THz optics 3D printed with TOPAS. J. Infrared Millim. Terahertz Waves 37, 303–307 (2016)

    Article  Google Scholar 

  • Crowe, T.W., Globus, T., Woolard, D.L., Hesler, J.L.: Terahertz sources and detectors and their application to biological sensing. Philos. Trans. A Math. Phys. Eng. Sci. 362, 365–374 (2004)

    Article  ADS  Google Scholar 

  • Ducournau, G., Yoshimizu, Y., Hisatake, S., Pavanello, F., Peytavit, E., Zaknoune, M., Nagatsuma, T., Lampin, J.F.: Coherent THz communication at 200 GHz using a frequency comb, UTC-PD and electronic detection. Electron. Lett. 50, 386–388 (2014)

    Article  Google Scholar 

  • Habib, M.S., Bang, O., Bache, M.: Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes. Opt. Express 23, 17394–17406 (2015)

    Article  ADS  Google Scholar 

  • Hasan, R., Anower, M.S., Islam, M.A., Razzak, S.M.A.: Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance. Appl. Opt. 55, 4145–4152 (2016)

    Article  ADS  Google Scholar 

  • Islam, R., Selim, H.M., Hasanuzzaman, G.K., Rana, S., Anwar, S.M.: Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance. Opt. Lett. 41, 440–443 (2016)

    Article  ADS  Google Scholar 

  • Karpowicz, N., Dai, J., Lu, X., Chen, Y., Yamaguchi, M., Zhao, H., Zhang, X.-C., Zhang, L., Zhang, C., Price-Gallagher, M.: Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Appl. Phys. Lett. 92, 011131-1–011131-3 (2008)

    ADS  Google Scholar 

  • Lu, W., Argyros, A.: Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe. J. Lightwave Technol. 32, 4019–4025 (2014)

    Article  ADS  Google Scholar 

  • Lopresti, P.G., Refai, H.: Experimental evaluation of a misalignment tolerant FSO receiver. In: Proceedings of SPIE the International Society for Optical Engineering, pp. 76850B–76850B (2010)

  • Mousavi, S.A., Sandoghchi, S.R., Richardson, D.J., Poletti, F.: Broadband high birefringence and polarizing hollow core antiresonant fibers. Opt. Express 24, 22943–22958 (2016)

    Article  ADS  Google Scholar 

  • Nielsen, K., Rasmussen, H.K., Adam, A.J., Planken, P.C., Bang, O., Jepsen, P.U.: Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express 17, 8592–8601 (2009)

    Article  ADS  Google Scholar 

  • Nunes, P.S., Ohlsson, P.D., Ordeig, O., Kutter, J.P.: Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid. Nanofluid. 9, 145–161 (2010)

    Article  Google Scholar 

  • Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., Schoebel, J., Kurner, T.: Short-range ultra-broadband terahertz communications: concepts and perspectives. IEEE Antennas Propag. 49, 24–39 (2008)

    Article  Google Scholar 

  • Poletti, F.: Nested antiresonant nodeless hollow core fiber. Opt. Express 22, 23807–23828 (2014)

    Article  ADS  Google Scholar 

  • Ruth, M.W., Bryan, E.C., Vincent, P.W., Richard, J.P., Donald, D.A., Edmund, H.L., Michael, P.: Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47, 3853–3863 (2002)

    Article  Google Scholar 

  • Vincetti, L., Setti, V.: Elliptical hollow core tube lattice fibers for terahertz applications. Opt. Fiber Technol. 19, 31–34 (2013)

    Article  ADS  Google Scholar 

  • Wang, X., Lou, S., Lu, W.: Bend-resistant large-mode-area photonic crystal fiber with a triangular-core. Appl. Opt. 52, 4323–4328 (2013)

    Article  ADS  Google Scholar 

  • Wang, X., Lou, S., Lu, W., Sheng, X., Zhao, T., Hua, P.: Bend resistant large mode area fiber with multi-trench in the core. IEEE J. Sel. Top. Quantum Electron. 22, 117–124 (2016)

    Article  Google Scholar 

  • Yu, X., Shi, J., Hao, H., Pengyu, G., Galili, M., Morioka, T., Jepsen, P.U., Oxenløwe, L.K.: THz photonics-wireless transmission of 160 Gbit/s bitrate. In: OECC, pp. 1–3 (2016)

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (Grant Nos. 61575016 and 61475016) and the Fundamental Research Funds for the Central Universities (Grant No. 2017YJS003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqin Lou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Lou, S., Wang, X. et al. High-birefringence hollow-core anti-resonant THz fiber. Opt Quant Electron 50, 162 (2018). https://doi.org/10.1007/s11082-018-1402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1402-7

Keywords

Navigation