Skip to main content
Log in

Solitons resonant behavior for a waveguide directional coupler system in optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A nonlinear waveguide directional coupler system in optical fibers is investigated. The system can be modelled as coupled nonlinear Schrödinger equations. Applying Hirota bilinear transformation method, analytic one- and two-soliton solutions are constructed. Furthermore, a novel class of solitons resonant behavior is observed. The solitons are split into multiple wave peaks around colliding point. The impacts of main parameters on soliton collisions are systematically discussed. Group velocity dispersion parameter and group velocity mismatch parameter can impact and control the resonant effects. Meanwhile, the complex parameters in the soliton solutions can determine resonant peaks intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ablowitz, M.J., Biondini, G., Ostrovsky, L.A.: Optical solitons: perspectives and applications. Chaos 10, 471–474 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. pp. 55–62, Academic Press, San Diego (2007)

    Google Scholar 

  • Akhmediev, N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. pp. 70–88, Chapman and Hall, London (1997)

    Google Scholar 

  • Al Qurashi, M.M., Yusuf, A., Aliyu, A.I., Inc, M.: Optical and other solitons for the fourth-order dispersive nonlinear Schrödinger equation with dual-power law nonlinearity. Superlatt. Microstruct. 105, 183–197 (2017)

    Article  ADS  Google Scholar 

  • Boumaza, N., Benouaz, T., Chikhaoui, A., Cheknane, A.: Numerical simulation of nonlinear pulses propagation in a nonlinear optical directional coupler. Int. J. Phys. Sci. 4, 505–513 (2009)

    Google Scholar 

  • Bulgakov, E.N., Sadreev, A.F.: Giant optical vortex in photonic crystal waveguide with nonlinear optical cavity. Phys. Rev. B (2012). https://doi.org/10.1103/PhysRevB.85.165305

    Google Scholar 

  • Chai, J., Tian, B., Sun, W.R., Xie, X.Y.: Solitons and rouge waves for a generalized (3+1)-dimensional variable-coefficient Kadomtsev–Petviashvili equation in fluid mechanics. Comput. Math. Appl. 71, 2060–2068 (2016)

    Article  MathSciNet  Google Scholar 

  • Chen, Y., Snyder, A.W., Payne, D.N.: Twin core non-linear couplers with gain and loss. IEEE J. Quantum Electron. 28, 239–245 (1992)

    Article  ADS  Google Scholar 

  • Darvishi, M.T., Najafi, M., Wazwaz, A.M.: Soliton solutions for Boussinesq-like equations with spatio-temporal dispersion. Ocean Eng. 130, 228–240 (2017)

    Article  Google Scholar 

  • De, K.K., Raju, T.S., Kumar, C.N., Panigrahi, P.K.: Semirational and symbiotic self-similar rogue waves in a (2+1)-dimensional graded-index waveguide. J. Mod. Opt. 63, 1196–1204 (2016)

    Article  ADS  Google Scholar 

  • Dror, N., Malomed, B.A., Zeng, J.H.: Domain walls and vortices in linearly coupled systems. Phys. Rev. E (2011). https://doi.org/10.1103/PhysRevE.84.046602

    Google Scholar 

  • Ekici, M., Zhou, Q., Sonmezoglu, A., Moshokoa, S.P., Ullah, M.Z., Biswas, A., Belic, M.: Optical solitons with DWDM technology and four-wave mixing. Superlatt. Microstruct. 107, 254–266 (2017)

    Article  ADS  Google Scholar 

  • Friberg, S.R., Silberberg, Y., Oliver, M.K., Andrejco, M.J., Saifi, M.A., Smith, P.W.: Ultrafast all-optical switching in a dual-core fiber nonlinear coupler. Appl. Phys. Lett. (1987). https://doi.org/10.1063/1.98762

    Article  ADS  Google Scholar 

  • Gao, L.N., Zhao, X.Y., Zi, Y.Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72, 1225–1229 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Grigoriev, V., Biancalana, F.: Nonreciprocal switching thresholds in coupled nonlinear microcavities. Opt. Lett. 36, 2131–2133 (2011)

    Article  ADS  Google Scholar 

  • Guo, R., Zhao, H.H.: Effects of loss or gain terms on soliton and breather solutions in a couple fiber system. Nonlinear Dyn. 84, 933–941 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, R., Zhao, H.H., Wang, Y.: A higher-order coupled nonlinear Schrödinger system: solitons, breathers, and rogue wave solutions. Nonlinear Dyn. 83, 2475–2484 (2016)

    Article  MATH  Google Scholar 

  • Hasegawa, A.: An historical review of application of optical solitons for high speed communications. Chaos 10, 475–485 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hioe, F.T.: Solitary waves for n coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 82, 1152–1155 (1999)

    Article  ADS  Google Scholar 

  • Hirota, R.: Exact solutions of the modified Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  MATH  Google Scholar 

  • Hirota, R.: The Direct Method in Soliton Theory. pp. 166–189, Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  • Inc, M., Ates, E., Tchier, F.: Optical solitons of the coupled nonlinear Schrödinger’s equation with spatiotemporal dispersion. Nonlinear Dyn. 85, 1319–1329 (2016)

    Article  MATH  Google Scholar 

  • Inc, M., Aliyu, A.I., Yusuf, A., Baleanu, D.: Dark and combined optical solitons, and modulation instability analysis in dispersive metamaterial. Optik 157, 484–491 (2018a)

    Article  ADS  Google Scholar 

  • Inc, M., Aliyu, A.I., Yusuf, A., Baleanu, D.: Optical solitons, conservation laws and modulation instability analysis for the modified nonlinear Schrödinger’s equation for Davydov solitons. J. Electromagn. Waves Appl. 32, 858–873 (2018b)

    Article  Google Scholar 

  • Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D.: Fractional optical solitons for the conformable space-time nonlinear Schrödinger equation with Kerr law nonlinearity. Opt. Quant. Electron. (2018c). https://doi.org/10.1007/s11082-018-1410-7

    MATH  Google Scholar 

  • Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D.: Soliton structures to some time-fractional nonlinear differential equations with conformable derivative. Opt. Quant. Electron. 50, 20 (2018d)

    Article  Google Scholar 

  • Islam, W., Younis, M., Rizvi, S.T.R.: Optical solitons with time fractional nonlinear Schrödinger equation and competing weakly nonlocal nonlinearity. Optik 130, 562–567 (2017)

    Article  ADS  Google Scholar 

  • Jiang, Y., Tian, B., Liu, W.J., Sun, K., Li, M., Wang, P.: Soliton interactions and complexes for coupled nonlinear Schrödinger equations. Phys. Rev. E (2012). https://doi.org/10.1103/PhysRevE.85.036605

    Google Scholar 

  • Kanna, T., Lakshmanan, M.: Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 86, 5043–5046 (2001)

    Article  ADS  Google Scholar 

  • Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. pp. 63–78, Academic Press, San Diego (2003)

    Book  Google Scholar 

  • Lee, J., Koo, J., Lee, J.H.: A pulse-width-tunable, mode-locked fiber laser based on dissipative soliton resonance using a bulk-structured Bi2Te3 topological insulator. Opt. Eng. (2016). https://doi.org/10.1117/1.OE.55.8.081309

    Google Scholar 

  • Li, B.Q., Ma, Y.L.: New application of the \((G ^{\prime }/G)\)-expansion method to excite soliton structures for nonlinear equation. Z. Naturfors. Sect. A J. Phys. Sci. 65, 518–524 (2010)

    ADS  Google Scholar 

  • Li, B.Q., Ma, Y.L.: The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer–Kaup equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 16, 144–149 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Li, B.Q., Ma, Y.L.: Periodic solutions and solitons to two complex short pulse (CSP) equations in optical fiber. Optik 144, 149–155 (2017a)

    Article  ADS  Google Scholar 

  • Li, B.Q., Ma, Y.L.: Gaussian rogue waves for a nonlinear variable coefficient Schrödinger system in inhomogeneous optical nanofibers. J. Nanoelectr. Optoelectr. 12, 1397–1401 (2017b). https://doi.org/10.1166/jno.2017.2210

    Article  Google Scholar 

  • Li, B.Q., Ma, Y.L.: Rich soliton structures for the Kraenkel–Manna–Merle (KMM) system in ferromagnetic materials. J. Supercond. Novel Magn. 31, 1773–1778 (2017c). https://doi.org/10.1007/s10948-017-4406-9

    Article  Google Scholar 

  • Li, B.Q., Ma, Y.L.: Rogue waves for the optical fiber system with variable coefficients. Optik 158, 177–184 (2018)

    Article  ADS  Google Scholar 

  • Li, B.Q., Ma, Y.L., Sun, J.Z.: The interaction processes of the N-soliton solutions for an extended generalization of Vakhnenko equation. Appl. Math. Comput. 216, 3522–3535 (2010)

    MathSciNet  MATH  Google Scholar 

  • Li, B.Q., Ma, Y.L., Mo, L.P., Fu, Y.Y.: The N-loop soliton solutions for (2+1)-dimensional Vakhnenko equation. Comput. Math. Appl. 74, 504–512 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B.Q., Ma, Y.L., Yang, T.M.: The oscillating collisions between the three solitons for a dual-mode fiber coupler system. Superlatt. Microstruct. 110, 126–132 (2017)

    Article  ADS  Google Scholar 

  • Ling, L.M., Feng, B.F., Zhu, Z.N.: Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation. Physica D 327, 13–29 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Liu, L., Tian, B., Chai, H.P., Yuan, Y.Q.: Certain bright soliton interactions of the Sasa–Satsuma equation in a monomode optical fiber. Phys. Rev. E (2017a). https://doi.org/10.1103/PhysRevE.95.032202

    Google Scholar 

  • Liu, L., Tian, B., Xie, X.Y., Guan, Y.Y.: Vector bright soliton behaviors of the coupled higher-order nonlinear Schrödinger system in the birefringent or two-mode fiber. Chaos 27, 013108 (2017b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lu, X., Ling, L.M.: Vector bright solitons associated with positive coherent coupling via Darboux transformation. Chaos (2015). https://doi.org/10.1063/1.4936674

    MathSciNet  MATH  Google Scholar 

  • Ma, Y.L., Li, B.Q.: The wrinkle-like N-solitons for the thermophoretic motion equation through graphene sheets. Physica A 494, 169–174 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Makhankov, V.G.: Soliton Phenomenology. pp. 90–115, Kluwer Academic, London (1990)

    Book  Google Scholar 

  • Raju, T.S., Panigrahi, P.K., Porsezian, K.: Nonlinear compression of solitary waves in asymmetric twin-core fibers. Phys. Rev. E (2005). https://doi.org/10.1103/PhysRevE.71.026608

    Google Scholar 

  • Sakkaravarthi, K., Kanna, T.: Multicomponent long-wave-short-wave resonance interaction system: bright solitons, energy-sharing collisions, and resonant solitons. Phys. Rev. E (2014). https://doi.org/10.1103/PhysRevE.90.052912

    Google Scholar 

  • Samikannu, S., Sivaraj, S.: Dissipative soliton generation in an all-normal dispersion ytterbium-doped fiber laser using few-layer molybdenum diselenide as a saturable absorber. Opt. Eng. (2016). https://doi.org/10.1117/1.OE.55.8.081311

    Google Scholar 

  • Scott, A.C.: Launching a Davydov soliton: I. Soliton analysis. Phys. Scr. 29, 279–283 (1984)

    Article  ADS  Google Scholar 

  • Taghizadeh, N., Zhou, Q., Ekici, M., Mirzazadeh, M.: Soliton solutions for Davydov solitons in alpha-helix proteins. Superlatt. Microstruct. 102, 323–341 (2017)

    Article  ADS  Google Scholar 

  • Tahir, F., Younis, M., Rehman, H.U.: Optical Gaussons and dark solitons in directional couplers with spatiotemporal dispersion. Opt. Quantum Electron. (2017). https://doi.org/10.1007/s11082-017-1259-1

    Google Scholar 

  • Travers, J.C., Stone, J.M., Rulkov, A.B., Cumberl, B.A., George, A.K., Popov, S.V., Knight, J.C., Taylor, J.R.: Optical pulse compression in dispersion decreasing photonic crystal fiber. Opt. Express 15, 13203–13211 (2007)

    Article  ADS  Google Scholar 

  • Vijayajayanthi, M., Kanna, T., Lakshmanan, M.: Multisoliton solutions and energy sharing collisions in coupled nonlinear Schrödinger equations with focusing, defocusing and mixed type nonlinearities. Eur. Phys. J. Spec. Top. 173, 57–80 (2009)

    Article  Google Scholar 

  • Wang, L., Zhu, Y.J., Qi, F.H.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells–Fokas equation in inhomogeneous fibers. Chaos (2015). https://doi.org/10.1063/1.4922025

    MathSciNet  Google Scholar 

  • Wazwaz, A.M.: Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method. Appl. Math. Comput. 190, 633–640 (2007)

    MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves. Appl. Math. Comput. 201, 489–503 (2008a)

    MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: The Hirota’s direct method and the tanh–coth method for multiple-soliton solutions of the Sawada–Kotera–Ito seventh-order equation. Appl. Math. Comput. 199, 133–138 (2008b)

    MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: Gaussian solitary waves for the logarithmic Boussinesq equation and the logarithmic regularized Boussinesq equation. Ocean Eng. 94, 111–115 (2015)

    Article  Google Scholar 

  • Wazwaz, A.M.: Multiple kink solutions for two coupled integrable (2+1)-dimensional systems. Appl. Math. Lett. 58, 1–6 (2016a)

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: Integrable couplings of the generalized Vakhnenko equation: multiple soliton solutions. J. Vib. Control 22, 915–919 (2016b)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, J.Y., Ma, W.X.: Abundant interaction solutions of the KP equation. Nonlinear Dyn. 89, 1539–1544 (2017)

    Article  MathSciNet  Google Scholar 

  • Yefsah, T., Sommer, A.T., Ku, M.J.H., Cheuk, L.W., Ji, W.J., Bakr, W.S., Zwierlein, M.W.: Heavy solitons in a fermionic superfluid. Nature 499, 426–430 (2013)

    Article  ADS  Google Scholar 

  • Younis, M., Riavi, S.T.R., Zhou, Q., Biswas, A., Belic, M.: Optical solitons in dual-core fibers with \(G ^{\prime }/G\)-expansion scheme. J. Optoelectron. Adv. Mater. 17, 505–510 (2015)

    Google Scholar 

  • Zhang, Z.X., Chen, L., Bao, X.Y.: A fourth-order Runge–Kutta in the interaction picture method for numerically solving the coupled nonlinear Schrödinger equation. Opt. Express 18, 8261–8276 (2010)

    Article  ADS  Google Scholar 

  • Zhaqilao: The interaction solitons for the complex short pulse equation. Commun. Nonlinear Sci. Numer. Simul. 47, 379–393 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhou, Q.: Optical solitons for Biswas-Milovic model with Kerr law and parabolic law nonlinearities. Nonlinear Dyn. 84, 677–681 (2016)

    Article  MathSciNet  Google Scholar 

  • Zhou, Q., Biswas, A.: Optical solitons in parity-time-symmetric mixed linear and nonlinear lattice with non-Kerr law nonlinearity. Superlatt. Microstruct. 109, 588–598 (2017)

    Article  Google Scholar 

  • Zuo, D.W., Gao, Y.T., Xue, L., Feng, Y.J.: Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear Schrödinger equation in an optical fiber, fluid or plasma. Opt. Quantum Electron. (2016). https://doi.org/10.1007/s11082-015-0290-3

    Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (NSFC) (11571023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Lan Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BQ., Ma, YL. Solitons resonant behavior for a waveguide directional coupler system in optical fibers. Opt Quant Electron 50, 270 (2018). https://doi.org/10.1007/s11082-018-1536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1536-7

Keywords

Navigation