Skip to main content
Log in

Implications of theoretical analysis to explore the functional core dimension in one-rod core microstructured optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A new development in optical fiber technology that has attracted interest for multitude of novel and potential applications is an all-in-silica microstructured optical fibre (MOF) with one-rod core. We aim to estimate the functional core dimension for one-rod core triangular MOF (T-MOF) from its geometrical characteristics by using an alternative analytical field model. Moreover, to scrutinize the validity of the choice of effective core dimension (by adapting V-parameter, i.e., the normalized frequency) for T-MOF, we have explored the rudimentary propagation characteristics of the T-MOF in single mode guidance realm. We made comparisons with those which are based on the experimental and numerical studies. Relative errors are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ainslie, B.J., Day, C.R.: A review of single-mode fibers with modified dispersion characteristics. J. Lightwave Technol. LT-4, 967–979 (1986)

    ADS  Google Scholar 

  • Algorri, J.F., Zografopoulos, D.C., Tapetado, A., Poudereux, D., Sanchez-Pena, J.M.: Infiltrated photonic crystal fibers for sensing applications. Sensors 18, 4263 (2018)

    Google Scholar 

  • Anderson, W.T., Philen, D.L.: Spot size measurements for single mode fibres—a comparison of four techniques. J. Lightwave Technol. LT-1, 20–26 (1983)

    ADS  Google Scholar 

  • Artiglia, M., Calzavara, M., Di Vita, P., Sharma, A.: A new procedure for analysis of single-mode-fiber far-field data. Fiber Integr. Opt. 9, 37–42 (1989a)

    Google Scholar 

  • Artiglia, M., Coppa, G., Vita, P.D., Potenza, M., Sharma, A.: Mode field diameter measurements in single-mode optical fibres. J. Lightwave Technol. 7, 1139–1152 (1989b)

    ADS  Google Scholar 

  • Aspnes, D.E.: Local-field effects and effective-medium theory: microscopic perspective. Am. J. Phys. 50, 704–709 (1982)

    ADS  Google Scholar 

  • Atkin, D.M., Russell, PStJ, Birks, T.A., Roberts, P.J.: Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure. J. Mod. Opt. 43, 1035–1053 (1996)

    ADS  Google Scholar 

  • Bao, X.-F., Wang, X.-J., Su, H., Shu, X.-J.: Geometric definition of the V-parameter in photonic crystal fibers. Opt. Lett. 39, 892–895 (2014)

    ADS  Google Scholar 

  • Birks, T.A., Roberts, P.J., Russell, PStJ, Atkin, D.M., Shepherd, T.J.: Full 2-D photonic band gaps in silica/air structures. Electron. Lett. 31, 1941–1943 (1995)

    Google Scholar 

  • Birks, T.A., Knight, J.C., Russell, PStJ: Endlessely single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    ADS  Google Scholar 

  • Boucouvalas, A.C.: Use of far-field radiation pattern to characterise single-mode symmetric slab waveguides. Electron. Lett. 19, 120–121 (1983)

    ADS  Google Scholar 

  • Brechet, F., Marcou, J., Pagnoux, D., Roy, P.: Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method. Opt. Fiber Technol. 6, 181–191 (2000)

    ADS  Google Scholar 

  • Broderick, N.G.R., Monro, T.M., Bennett, P.J., Richardson, D.J.: Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett. 24, 1395–1397 (1999)

    ADS  Google Scholar 

  • Broeng, J., Mogilevstev, D., Barkou, S.E., Bjarklev, A.: Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5, 305–330 (1999)

    ADS  Google Scholar 

  • Carlson, C.A., Woehl, J.C.: Fabrication of optical tips from photonic crystal fibers. Rev. Sci. Instrum. 79, 103707-1–103707-5 (2008)

    ADS  Google Scholar 

  • Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, PStJ, Roberts, P.J.: Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)

    Google Scholar 

  • Dabirian, A., Akbari, M., Mortensen, N.A.: The radiated fields of the fundamental mode of photonic crystal fibers. Opt. Express 13, 3999–4004 (2005)

    ADS  Google Scholar 

  • Dou, C., Jing, X., Li, S., Wu, J., Wang, Q.: A compact and low-loss polarization splitter based on dual-core photonic crystal fiber. Opt. Quantum Electron. 50, 255 (2018)

    Google Scholar 

  • Folkenberg, J.R., Mortensen, N.A., Hansen, K.P., Hansen, T.P., Simonsen, H.R., Jakobsen, C.: Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers. Opt. Lett. 28, 1882–1884 (2003)

    ADS  Google Scholar 

  • Gambling, W.A., Payne, D.N., Matsumura, H., Dyott, R.B.: Determination of core diameter and refractive-index difference of single-mode fibers by observation of the far-field pattern. Microw. Opt. Acoust. 1, 13–17 (1976)

    Google Scholar 

  • Gander, M.J., McBride, R., Jones, J.D.C., Mogilevtsev, D., Birks, T.A., Knight, J.C., Russell, PStJ: Experimental measurement of group velocity dispersion in photonic crystal fiber. Electron. Lett. 35, 63–64 (1999a)

    Google Scholar 

  • Gander, M.J., McBride, R., Jones, J.D.C., Birks, T.A., Knight, J.C., Russell, PStJ, Blanchard, P.M., Burnett, J.G., Greenaway, A.H.: Measurement of the wavelength dependence of beam divergence for photonic crystal fiber. Opt. Lett. 24, 1017–1019 (1999b)

    ADS  Google Scholar 

  • Ghatak, A., Lokanathan, S.: Quantum Mechanics: Theory and Applications. Macmillan, New Delhi (1999)

    MATH  Google Scholar 

  • Ghatak, A.K., Thyagarajan, K.: Optical Electronics. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Ghatak, A.K., Thyagarajan, K.: Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  • Gloge, D.: Weakly guiding fibers. Appl. Opt. 10, 2252–2258 (1971)

    ADS  Google Scholar 

  • Gourley, P.L., Wendt, J.R., Vawter, G.A., Brennan, T.W., Hammons, B.E.: Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors. Appl. Phys. Lett. 64, 687–689 (1994)

    ADS  Google Scholar 

  • Horiguchi, M., Osanai, H.: Spectral losses of low-OH-content optical fibres. Electron. Lett. 12, 310–312 (1976)

    ADS  Google Scholar 

  • Jensen, J.B., Pedersen, L.H., Hoiby, P.E., Nielsen, L.B., Hansen, T.P., Folkenberg, J.R., Riishede, J., Noordegraaf, D., Nielsen, K., Carlsen, A., Bjarklev, A.: Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt. Lett. 29, 1974–1976 (2004)

    ADS  Google Scholar 

  • Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001)

    ADS  Google Scholar 

  • Jones, D.J., Diddams, S.A., Ranka, J.K., Stentz, A., Windeler, R.S., Hall, J.L., Cundiff, S.T.: Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000)

    ADS  Google Scholar 

  • Kassani, S.H., Khazaeinezhad, R., Jung, Y., Kobelke, J., Oh, K.: Suspended ring-core photonic crystal fiber gas sensor with high sensitivity and fast response. IEEE Photonics J. 7, 2700409 (2015)

    Google Scholar 

  • Knight, J.C.: Photonic crystal fibers. Nature 424, 847–851 (2003)

    ADS  Google Scholar 

  • Knight, J.C., Birks, T.A., Russell, P.St.J., Atkin, D.M. (1996) All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549. see also errata Opt. Lett. 22, 484–485 (1997)

  • Knight, J.C., Birks, T.A., Russell, PStJ, de Sandro, J.P.: Properties of photonic crystal fiber and the effective index model. J. Opt. Soc. Am. A 15, 748–752 (1998a)

    ADS  Google Scholar 

  • Knight, J.C., Broeng, J., Birks, T.A., Russell, PStJ: Photonic bandgap guidance in optical fiber. Science 282, 1476–1478 (1998b)

    Google Scholar 

  • Knight, J.C., Birks, T.A., Cregan, R.F., Russell, PStJ, de Sandro, J.P.: Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998c)

    Google Scholar 

  • Knight, J.C., Birks, T.A., Cregan, R.F., Russell, PStJ, de Sandro, J.-P.: Photonic crystals as optical fibres—physics and applications. Opt. Mater. 11, 143–151 (1999)

    ADS  Google Scholar 

  • Koshiba, M.: Full-vector analysis of photonic crystal fibers using the finite element method. IEICE Trans. Electron. E85-C, 881–888 (2002)

    Google Scholar 

  • Koshiba, M., Saitoh, K.: Structural dependance of effective area and mode field diameter for holey fibers. Opt. Express 11, 1746–1756 (2003)

    ADS  Google Scholar 

  • Koshiba, M., Saitoh, K.: Applicability of classical optical fiber theories to holey fibers. Opt. Lett. 29, 1739–1741 (2004)

    ADS  Google Scholar 

  • Kovacevic, M.S., Kuzmanovic, L., Djordjevich, A.: Estimation of Rayleigh scattering loss in a double-clad photonic crystal fiber. Opt. Quantum Electron. 50, 217 (2018)

    Google Scholar 

  • Krauss, T.F., De La Rue, R.M., Brandt, S.: Two-dimensional photonic band gap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996)

    ADS  Google Scholar 

  • Li, Y.-F., Wang, C.-Y., Hu, M.-L.: A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation. Opt. Commun. 238, 29–33 (2004)

    ADS  Google Scholar 

  • Li, Y., Wang, C., Chen, Y., Hu, M., Liu, B., Chai, L.: Solution of the fundamental space-filling mode of photonic crystal fibres: numerical method versus analytical approaches. Appl. Phys. B 85, 597–601 (2006)

    ADS  Google Scholar 

  • Li, H., Mafi, A., Schlzgen, A., Li, L., Temyanko, V.L., Peyghambarian, N., Moloney, J.V.: Analysis and design of photonic crystal fibers based on an improved effective-index method. J. Lightwave Technol. 25, 1224–1230 (2007)

    ADS  Google Scholar 

  • Mangan, B.J., Knight, J.C., Birks, T.A., Russell, PStJ, Greenaway, A.H.: Experimental study of dual-core photonic crystal fibre. Electron. Lett. 36, 1358–1359 (2000)

    Google Scholar 

  • Marcuse, D.: Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56, 703–718 (1977)

    ADS  Google Scholar 

  • Marcuse, D.: Gaussian approximation of the fundamental modes of graded-index fibers. J. Opt. Soc. Am. 68, 103–109 (1978)

    ADS  Google Scholar 

  • Mekis, A., Chen, J.C., Kurland, I., Fan, S.H., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996)

    ADS  Google Scholar 

  • Mogilevtsev, D., Birks, T.A., Russell, PStJ: Group-velocity dispersion in photonic crystal fibers. Opt. Lett. 23, 1662–1664 (1998)

    ADS  Google Scholar 

  • Mortensen, N.A., Folkenberg, J.R.: Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena. Opt. Express 10, 475–481 (2002)

    ADS  Google Scholar 

  • Mortensen, N.A., Folkenberg, J.R.: Low-loss criterion and effective area considerations for photonic crystal fibers. J. Opt. A Pure Appl. Opt. 5, 163–167 (2003)

    ADS  Google Scholar 

  • Mortensen, N.A., Folken, J.R., Skovgaard, P.M.W., Broeng, J.: Numerical aperture of single-mode photonic crystal fibers. IEEE Photon. Technol. Lett. 14, 1094–1096 (2002)

    ADS  Google Scholar 

  • Mortensen, N.A., Nielsen, M.D., Folkenberg, J.R., Petersson, A., Hansen, K.P.: Improved large-mode-area endlessly single-mode photonic crystal fibers. Opt. Lett. 28, 393–395 (2003a)

    ADS  Google Scholar 

  • Mortensen, N.A., Folkenberg, J.R., Nielsen, M.D., Hansen, K.P.: Modal cut-off and the V parameter in photonic crystal fibers. Opt. Lett. 28, 1879–1881 (2003b)

    ADS  Google Scholar 

  • Nielsen, M.D., Mortensen, N.A.: Photonic crystal fiber design based on the V-parameter. Opt. Express 11, 2762–2768 (2003)

    ADS  Google Scholar 

  • Nielsen, M.D., Mortensen, N.A., Folkenberg, J.R., Bjarklev, A.: Mode-field radius of photonic crystal fibers expressed by the V-parameter. Opt. Lett. 28, 2309–2311 (2003)

    ADS  Google Scholar 

  • Nielsen, M.D., Folkenberg, J.R., Mortensen, N.A., Bjarklev, A.: Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers. Opt. Express 12, 430–435 (2004a)

    ADS  Google Scholar 

  • Nielsen, M.D., Jacobsen, C., Mortensen, N.A., Folkenberg, J.R., Simonsen, H.R.: Low-loss photonic crystal fibers for transmission systems and their dispersion properties. Opt. Express 12, 1372–1376 (2004b)

    ADS  Google Scholar 

  • Ohashi, M., Tadeda, M., Shiraki, K., Tajima, K.: Imperfection loss reduction in viscosity matched optical fibers. Photon. Technol. Lett. 5, 812–814 (1993)

    ADS  Google Scholar 

  • Pask, C.: Physical interpretation of Peterman’s strange spot size for single-mode fibers. Electron. Lett. 20, 144–145 (1984)

    Google Scholar 

  • Pickrell, G., Kominsky, D., Stolen, R., Ellis, F., Kim, J., Safaai-Jazi, A., Wang, A.: Microstructural analysis of random hole optical fibers. IEEE Photonic Technol. Lett. 16, 491–493 (2004)

    ADS  Google Scholar 

  • Poli, F., Cucinotta, A., Passaro, D., Broeng, J.: Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs. IEEE J. Sel. Top. Quantum Electron. 15, 54–60 (2009a)

    ADS  Google Scholar 

  • Poli, F., Lægsgaard, J., Passaro, D., Cucinotta, A., Selleri, S., Broeng, J.: Suppression of higher-order modes by segmented core doping in rod-type photonic crystal fibers. J. Lightwave Technol. 27, 4935–4942 (2009b)

    ADS  Google Scholar 

  • Poli, F., Coscelli, E., Alkeskjold, T.T., Passaro, D., Cucinotta, A., Leick, L., Broeng, J., Selleri, S.: Cut-off analysis of 19-cell Yb-doped double-cladding rod-type photonic crystal fibers. Opt. Express 19, 9896–9907 (2011)

    ADS  Google Scholar 

  • Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm. Opt. Lett. 25, 25–27 (2000)

    ADS  Google Scholar 

  • Reeves, W.H., Knight, J.C., Russell, PStJ, Roberts, P.J.: Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Express 10, 609–613 (2002)

    ADS  Google Scholar 

  • Russell, PStJ: Photonic crystal fibers. Science 299, 358–362 (2003)

    ADS  Google Scholar 

  • Russell, PStJ: Photonic crystal fibers. J. Lightwave Technol. 24, 4729–4749 (2006)

    ADS  Google Scholar 

  • Saitoh, K., Koshiba, M.: Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quantum Electron. 38, 927–933 (2002)

    ADS  Google Scholar 

  • Saitoh, K., Koshiba, M.: Empirical relations for simple design of photonic crystal fibers. Opt. Express 13, 267–274 (2004)

    ADS  Google Scholar 

  • Saitoh, K., Koshiba, M.: Numerical modeling of photonic crystal fibers. J. Lightwave Technol. 23, 3580–3590 (2005)

    ADS  Google Scholar 

  • Saitoh, K., Koshiba, M., Hasegawa, T., Sasaoka, E.: Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Express 11, 843–852 (2003)

    ADS  Google Scholar 

  • Saitoh, K., Tsuchida, Y., Koshiba, M., Mortensen, N.A.: Endlessly single mode holey fibers: the influence of core design. Opt. Express 13, 10833–10839 (2005)

    ADS  Google Scholar 

  • Sharma, A.: Optimal Variational Method for Rectangular and Channel Waveguides; Guided Wave Optics; Selected Topics. Viva Books, New Delhi (2005)

    Google Scholar 

  • Sharma, A., Ghatak, A.K.: A variational analysis of single mode graded-index fibers. Opt. Commun. 36, 22–24 (1981)

    ADS  Google Scholar 

  • Sharma, A., Meunier, J.-P.: On the scalar modal analysis of optical waveguides using approximate methods. Opt. Commun. 281, 592–599 (2007)

    ADS  Google Scholar 

  • Sharma, D.K., Sharma, A.: Characteristics of microstructured optical fibers: an analytical approach. Opt. Quantum Electron. 44, 415–424 (2012)

    Google Scholar 

  • Sharma, D.K., Sharma, A.: On the mode field diameter of microstructured optical fibers. Opt. Commun. 291, 162–168 (2013)

    ADS  Google Scholar 

  • Sharma, D.K., Sharma, A.: Splicing of index-guiding microstructured optical fibers and single-mode fibers by controlled air-hole collapse: an analytical approach. Opt. Quantum Electron. 46, 409–422 (2014)

    Google Scholar 

  • Sharma, D.K., Tripathi, S.M.: Optical performance of tellurite glass microstructured optical fiber for slow-light geneartion assisted by stimulated Brillouin scattering. Opt. Mater. 94, 196–205 (2019)

    ADS  Google Scholar 

  • Sharma, A., Hosain, S.I., Ghatak, A.K.: The fundamental mode of graded-index fibers: simple and accurate variational methods. Opt. Quantum Electron. 14, 7–15 (1981)

    Google Scholar 

  • Sharma, D.K., Tripathi, S.M., Sharma, A.: Optical characteristics of polymer-infused microstructured optical fiber using an analytical field model. Optik 140, 1–9 (2017a)

    ADS  Google Scholar 

  • Sharma, D.K., Sharma, A., Tripathi, S.M.: Cladding mode coupling in long-period gratings in index-guided microstructured optical fibers. Appl. Phys. B Lasers Opt. 123, 187-1–187-12 (2017b)

    ADS  Google Scholar 

  • Sharma, D.K., Sharma, A., Tripathi, S.M.: Microstructured optical fibers for terahertz waveguiding regime by using an analytical field model. Opt. Fiber Technol. 39, 55–69 (2017c)

    ADS  Google Scholar 

  • Sharma, D.K., Sharma, A., Tripathi, S.M.: Thermo-optic characteristics of hybrid polymer/silica microstructured optical fiber: an analytical approach. Opt. Mater. 78, 508–520 (2018)

    ADS  Google Scholar 

  • Sharma, D.K., Tripathi, S.M., Sharma, A.: Modal analysis of high-index core tellurite glass microstructured optical fibres in infrared regime. J. Non Cryst. Solids 511, 147–160 (2019)

    ADS  Google Scholar 

  • Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman & Hall, London (1983)

    Google Scholar 

  • Tateda, M., Ohashi, M., Jajima, K., Shiraki, K.: Design of viscosity-matched optical fibers. Photon. Technol. Lett. 4, 1023–1025 (1992)

    ADS  Google Scholar 

  • Tonucci, R., Justus, B.L., Campillo, A.J., Ford, C.E.: Nanochannel array glass. Science 258, 783–785 (1992)

    ADS  Google Scholar 

  • Villuendas, F., Calvo, F., Marques, J.B.: Measurement of mode field radius in axially nonsymmetrical single-mode fibres with arbitrary power distribution. Opt. Lett. 12, 941–943 (1987)

    ADS  Google Scholar 

  • Wang, Z., Wu, H., Hu, X., Zhao, N., Mo, Q., Li, G.: Rayleigh scattering in few-mode optical fibers. Sci. Rep. 6, 35844 (2016)

    ADS  Google Scholar 

  • Wen, J., Duan, L., Ma, C., Fan, W.: Numerical simulation and analysis of femtosecond pulse evolution in liquid-core photonic crystal fiber based on adaptive step-size methods. Opt. Quant. Electron. 51, 184 (2019)

    Google Scholar 

  • White, T.P., Kuhlmey, B.T., McPhedran, R.C., Maystre, D., Renversez, G., de Sterke, C.M., Botten, L.C.: Multipole method for microstructured optical fibers. I. Formulation. J. Opt. Soc. Am. B 19, 2322–2330 (2002)

    ADS  Google Scholar 

  • Yablonovitch, E.: Photonic band-gap structures. J. Opt. Soc. Am. B 10, 283–295 (1993)

    ADS  Google Scholar 

  • Young, M.: Mode-field diameter of single-mode optical fiber by far-field scanning. Appl. Opt. 37, 5605–5619 (1998)

    ADS  Google Scholar 

  • Zhi, W., Guobin, R., Shuqin, L., Shuisheng, J.: Loss properties due to Rayleigh scattering in different types of fiber. Opt. Express 11, 39–47 (2003)

    ADS  Google Scholar 

  • Zhu, Z., Brown, T.G.: Analysis of the space filling modes of photonic crystal fibers. Opt. Express 8, 547–554 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

D.K. Sharma is grateful to IIT Kanpur, Kanpur (U.P), India for providing the Institute Post-doctoral Fellowship (PDF-102). The author wishes to thank Dr. S.M. Tripathi for his kind encouragement, and Prof. A. Sharma, IIT Delhi, New Delhi, India for his fruitful conversation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D.K., Tripathi, S.M. Implications of theoretical analysis to explore the functional core dimension in one-rod core microstructured optical fibers. Opt Quant Electron 51, 318 (2019). https://doi.org/10.1007/s11082-019-2036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2036-0

Keywords

Navigation