Skip to main content
Log in

Quantum communication using code division multiple access network

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

For combining different single photon channels into a single path, we use an effective and reliable technique which is known as quantum multiple access. We take advantage of an add-drop multiplexer capable of pushing and withdrawing a single photon into an optical fiber cable which carries quantum bits from multiusers. In addition to this, spreading spreads the channel noise at receiver side and use of filters stop the overlapping of adjacent channels, which helps in reducing the noise level and improved signal-to-noise ratio. In this way, we obtain enhanced performance of code division multiple access-based QKD links with a single photon without necessity of amplifiers and modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acín, A., Cirac, J.I., Lewenstein, M.: Entanglement percolation in quantum networks. Nat. Phys. 3(4), 256–259 (2007)

    Google Scholar 

  • Aparicio, L., Van Meter, R.: Multiplexing schemes for quantum repeater networks, quantum communications and quantum imaging IX. Int. Soc. Opt. Photonics 8163, 816308 (2011)

    Google Scholar 

  • Belavkin, V.P., Hirota, O., Hudson, R.L.: Quantum Communications and Measurement. Springer, Berlin (2013)

    Google Scholar 

  • Belthangady, C., Chuu, C.-S., Ite, A.Y., Yin, G.Y., Kahn, J.M., Harris, S.E.: Hiding single photons with spread spectrum technology. Phys. Rev. Lett. 104(22), 223601 (2010)

    ADS  Google Scholar 

  • Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and con tos5 (1984)

  • Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)

    MATH  Google Scholar 

  • Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  • Benslama, M., Batatia, H., Messai, A.: Transitions from Digital Communications to Quantum Communications: Concepts and Prospects. Wiley, Hoboken (2016)

    Google Scholar 

  • Blatt, R., Wineland, D.: Entangled states of trapped atomic ion. Nature 453(7198), 1008–1015 (2008)

    ADS  Google Scholar 

  • Boaron, Alberto, Boso, Gianluca, Rusca, Davide, Vulliez, Cédric, Autebert, Claire, Caloz, Misael, Perrenoud, Matthieu, Gras, Gaëtan, Bussières, Félix, Li, Ming-Jun, et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 190502 (2018)

    ADS  Google Scholar 

  • Brassard, G., Bussieres, F., Godbout, N., Lacroix, S.: Multiuser quantum key distribution using wavelength division multiplexing. In: Applications of photonic technology 6. 5260(2), 149–153. International Society for Optics and Photonics (2003)

  • Brassard, G., Bussières, F., Godbout, N., Lacroix, S.: Entanglement and wavelength division multiplexing for quantum cryptography networks. In: AIP Conference Proceedings 734(1), 323–326. American Institute of Physics (2004)

  • Brendel, J., Gisin, N., Tittel, W., Zbinden, H.: Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82(12), 2594 (1999)

    ADS  Google Scholar 

  • Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932 (1998)

    ADS  Google Scholar 

  • Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74(10), 104401 (2011)

    ADS  Google Scholar 

  • Capmany, J., Fernández-Pousa, C.R.: Quantum model for electro-optical amplitude modulation. Opt. Soc. Am. 18(24), 25127–25142 (2010)

    Google Scholar 

  • Capmany, J., Fernández-Pousa, C.R.: Realization of single-photon frequency-domain qubit channels using phase modulators. IEEE Photonics J. 4(6), 2074–2084 (2012)

    ADS  Google Scholar 

  • Chapuran, T.E., Toliver, P., Peters, N.A., Jackel, J., Goodman, M.S., Runser, R.J., McNown, S.R., Dallmann, N., Hughes, R.J., McCabe, K.P., et al.: Optical networking for quantum key distribution and quantum communications. New J. Phys. 11(10), 105001 (2009)

    ADS  Google Scholar 

  • Choi, I., Young, R., Townsend, P.D.: Quantum information to the home. New J. Phys. 13(6), 063039 (2011)

    ADS  Google Scholar 

  • Chou, C.-W., Laurat, J., Deng, H., Choi, K.S., De Riedmatten, H., Felinto, D., Kimble, H.J.: Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316(5829), 1316–1320 (2007)

    ADS  Google Scholar 

  • Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78(16), 3221 (1997)

    ADS  Google Scholar 

  • Ciurana, A., Martínez-Mateo, J., Peev, M., Poppe, A., Walenta, N., Zbinden, H., Martin, V.: Quantum metropolitan optical network based on wavelength division multiplexing. Opt. Express 22(2), 1576–1593 (2014)

    ADS  Google Scholar 

  • Clarke, J., Wilhelm, Frank K.: Superconducting quantum bits. Nature 453(7198), 1031–1042 (2008)

    ADS  Google Scholar 

  • Cover, T.M., Thomas, J.A.: Elements of Information Theory, pp. 33–36. Wiley, New York (1991)

    MATH  Google Scholar 

  • Czekaj, L., Horodecki, P.: Purely quantum superadditivity of classical capacities of quantum multiple access channels. Phys. Rev. Lett. 102(11), 110505 (2009)

    ADS  Google Scholar 

  • Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001)

    ADS  Google Scholar 

  • Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  • Eriksson, T.A., Hirano, T., Puttnam, B.J., Rademacher, G., Luís, R.S., Fujiwara, M., Namiki, R., Awaji, Y., Takeoka, M., Wada, N., et al.: Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels. Commun. Phys. 2(1), 9 (2019)

    Google Scholar 

  • Fedorov, M.V., Mikhailova, Y.M., Volkov, P.A.: Gaussian modelling and Schmidt modes of SPDC biphoton states. J. Phys. B Atom. Mol. Opt. Phys 42(17), 175503 (2009)

    ADS  Google Scholar 

  • Felinto, D., Chou, C.-W., Laurat, J., Schomburg, E.W., De Riedmatten, H.: Conditional control of the quantum states of remote atomic memories for quantum networking. Nat. Phys. 2(12), 844–848 (2006)

    Google Scholar 

  • Fouli, K., Maier, M.: Ocdma and optical coding: Principles, applications, and challenges [topics in optical communications]. IEEE Commun. Mag. 45(8), 27–34 (2007)

    Google Scholar 

  • Franson, J.D.: Nonlocal cancellation of dispersion. Phys. Rev. A 45(5), 3126 (1977)

    ADS  MathSciNet  Google Scholar 

  • Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    ADS  MATH  Google Scholar 

  • Golomb, S.W., Gong, G.: Signal Design for Good Correlation: for Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  • Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421(6920), 238 (2003)

    ADS  Google Scholar 

  • Guerreau, O.L., Mérolla, J.-M., Soujaeff, A., Patois, F., Goedgebuer, J.-P., Malassenet, F.J.: Long-distance QKD transmission using single-sideband detection scheme with WDM synchronization. IEEE J. Sel. Top. Quantum Eectron. 9(6), 1533–1540 (2003)

    ADS  Google Scholar 

  • Guha, S., Krovi, H., Fuchs, C.A., Dutton, Z., Slater, J.A., Simon, C., Tittel, W.: Rate-loss analysis of an efficient quantum repeater architecture. Phys. Rev. A 92(2), 022357 (2015)

    ADS  Google Scholar 

  • Hanzo, L., Haas, H., Imre, S., O’Brien, D., Rupp, M., Gyongyosi, L.: Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless. Proc. IEEE 100(Special Centennial Issue), 1853–1888 (2012)

    Google Scholar 

  • Heurs, M., Webb, J.G., Dunlop, A.E., Harb, C.C., Ralph, T.C., Huntington, E.H.: Multiplexed communication over a high-speed quantum channel. Phys. Rev. A 81(3), 032325 (2010)

    ADS  Google Scholar 

  • Hirano, T., Yamanaka, H., Ashikaga, M., Konishi, T., Namiki, R.: Quantum cryptography using pulsed homodyne detection. Phys. Rev. A 68(4), 042331 (2003)

    ADS  Google Scholar 

  • Hiskett, P.A., Rosenberg, D., Peterson, C.G., Hughes, R.J., Nam, S., Lita, A.E., Miller, A.J., Nordholt, J.E.: Long-distance quantum key distribution in optical fibre. New J. Phys. 8(9), 193 (2006)

    ADS  Google Scholar 

  • Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6(1), 1–9 (2016)

    Google Scholar 

  • Hughes, R.J., Morgan, G.L., Peterson, C.G.: Quantum key distribution over a 48 km optical fibre network. J. Mod. Opt. 47(2–3), 533–547 (2000)

    ADS  MathSciNet  Google Scholar 

  • Humble, T.S.: Spectral and spread-spectral teleportation. Phys. Rev. A 81(6), 062339 (2010)

    ADS  MathSciNet  Google Scholar 

  • Imre, S., Gyongyosi, L.: Advanced Quantum Communications: An Engineering Approach. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  • Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7(5), 378 (2013)

    ADS  Google Scholar 

  • Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)

    ADS  Google Scholar 

  • Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(2), 797 (2007)

    ADS  Google Scholar 

  • Little, B.E., Foresi, J.S., Steinmeyer, G., Thoen, E.R., Chu, S.T., Haus, H.A., Ippen, E.Pb, Kimerling, L.C., Greene, W.: Ultra-compact Si-\(SiO_{2}\) microring resonator optical channel dropping filters. IEEE Photonics Technol. Lett. 10(4), 549–551 (1998)

    ADS  Google Scholar 

  • Lü, X.-Y., Liu, J.-B., Ding, C.-L., Li, J.-H.: Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms. Phys. Rev. A 78(3), 032305 (2008)

    ADS  Google Scholar 

  • Lukin, M.D.: Colloquium: trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75(2), 457 (2003)

    ADS  Google Scholar 

  • Maitre, X., Hagley, E., Nogues, G., Wunderlich, C., Goy, P., Brune, M., Raimond, J.M., Haroche, S.: Quantum memory with a single photon in a cavity. Phys. Rev. Lett. 79(4), 769 (1997)

    ADS  Google Scholar 

  • Matsukevich, D.N., Kuzmich, A.: Quantum state transfer between matter and light. Science 306(5696), 663–666 (2004)

    ADS  Google Scholar 

  • Mora, J., Ruiz-Alba, A., Amaya, W., Martínez, A., García-Muñoz, V., Calvo, D., Capmany, J.: Experimental demonstration of subcarrier multiplexed quantum key distribution system. Opt. Lett. 37(11), 2031–2033 (2012)

    ADS  Google Scholar 

  • Mutagi, R.N.: Pseudo noise sequences for engineers. Electron. Commun. Eng. J. 8(2), 79–87 (1996)

    Google Scholar 

  • Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Phys. Today 54, 60–2 (2001)

    Google Scholar 

  • Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323(5913), 486–489 (2009)

    ADS  Google Scholar 

  • Omkar, S., Srikanth, R., Banerjee, S.: Dissipative and non-dissipative single-qubit channels: dynamics and geometry. Quantum Inf. Process. 12(12), 3725–3744 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  • Ortigosa-Blanch, A., Capmany, J.: Subcarrier multiplexing optical quantum key distribution. Phys. Rev. A 73(2), 024305 (2006)

    ADS  Google Scholar 

  • Pan, J.-W., Chen, Z.-B., Lu, C.-Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84(2), 777 (2012)

    ADS  Google Scholar 

  • Patel, K.A., Dynes, J.F., Lucamarini, M., Choi, I., Sharpe, A.W., Yuan, Z.L., Penty, R.V., Shields, A.J.: Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks. Appl. Phys. Lett. 104(5), 051123 (2014)

    ADS  Google Scholar 

  • Pathak, Anirban: Elements of Quantum Computation and Quantum Communication. Taylor & Francis, Bengaluru (2013)

    MATH  Google Scholar 

  • Phillips, D.F., Fleischhauer, A., Mair, A., Walsworth, R.L., Lukin, M.D.: Storage of light in atomic vapor. Phys. Rev. Lett. 86(5), 783 (2001)

    ADS  Google Scholar 

  • Pickholtz, R., Schilling, D., Milstein, L.: Theory of spread-spectrum communications-a tutorial. IEEE Trans. Commun. 30(5), 855–884 (1982)

    Google Scholar 

  • Qi, B., Zhu, W., Qian, L., Lo, H.-K.: Feasibility of quantum key distribution through a dense wavelength division multiplexing network. New J. Phys. 12(10), 103042 (2010)

    ADS  Google Scholar 

  • Raj, A.B., Sharma, V., Banerjee, S.: Principles and Applications of Free Space Optical Communication, Chapter 19. IET, UK (2018). ISBN: 978-1-78561-415-6

    Google Scholar 

  • Razavi, M.: Multiple-access quantum key distribution networks. IEEE Trans. Commun. 60(10), 3071–3079 (2012)

    Google Scholar 

  • Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics, p. 22. Wiley, New York (1991)

    Google Scholar 

  • Salehi, J.A.: Code division multiple-access techniques in optical fiber networks. I. Fundamental principles. IEEE Trans. Commun. 37(8), 824–833 (1989)

    Google Scholar 

  • Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83(1), 33 (2011)

    ADS  Google Scholar 

  • Scholtz, R.: The spread spectrum concept. IEEE Transactions on Communications 25(8), 748–755 (1977)

    ADS  MATH  Google Scholar 

  • Sharma, V.: Effect of noise on practical quantum communication systems. Def. Sci. J. 66(2), 186–192 (2016)

    Google Scholar 

  • Sharma, V., Sharma, R.: Analysis of spread spectrum in MATLAB. Int. J. Sci. Eng. Res. 5(1), 1899–1902 (2014)

    Google Scholar 

  • Sharma, V., Banerjee, S.: Analysis of quantum key distribution based satellite communication, In: IEEE, 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–5 (2018)

  • Sharma, V., Banerjee, S.: Analysis of atmospheric effects on satellite-based quantum communication: a comparative study. Quantum Inf. Process. 18(3), 67 (2019)

    ADS  MATH  Google Scholar 

  • Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 4681–4710 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • Sharma, V., Shrikant, U., Srikanth, R., Banerjee, S.: Decoherence can help quantum cryptographic security. Quantum Inf. Process. 17(8), 207 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • Shenoy, A., Pathak, A., Srikanth, R.: Quantum cryptography: key distribution and beyond. Quanta 6, 1–47 (2017)

    MathSciNet  Google Scholar 

  • Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13(11), 2391–2405 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • Sibson, P., Erven, C., Godfrey, M., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M., et al.: Chip-based quantum key distribution. Nat. Commun. 8, 13984 (2017)

    ADS  Google Scholar 

  • Sklar, B.: A structured overview of digital communications—a tutorial review-part II. IEEE Commun. Mag. 21(7), 6–21 (1983)

    Google Scholar 

  • Sklar, B.: Digital Communications, 2nd edn. Prentice-Hall, Upper Saddle River, NJ (2001)

    MATH  Google Scholar 

  • Smith, G., Yard, J.: Quantum communication with zero-capacity channels. Science 321(5897), 1812–1815 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  • Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59–70 (2014)

    ADS  Google Scholar 

  • Stucki, D., Brunner, N., Gisin, N., Scarani, V., Zbinden, H.: Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 87(19), 194108 (2005)

    ADS  Google Scholar 

  • Stucki, D., Barreiro, C., Fasel, S., Gautier, J.-D., Gay, O., Gisin, N., Thew, R., Thoma, Y., Trinkler, P., Vannel, F., et al.: Continuous high speed coherent one-way quantum key distribution. Opt. Express 17(16), 13326–13334 (2009)

    ADS  Google Scholar 

  • Takesue, H., Dyer, S.D., Stevens, M.J., Verma, V., Mirin, R.P., Nam, S.W.: Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2(10), 832–835 (2015)

    ADS  Google Scholar 

  • Tanaka, A., Fujiwara, M., Nam, S.W., Nambu, Y., Takahashi, S., Maeda, W., Yoshino, K.-I., Miki, S., Baek, B., Wang, Z., et al.: Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization. Opt. Express 16(15), 11354–11360 (2008)

    ADS  Google Scholar 

  • Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14(7), 2599–2616 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16(5), 11 (2017)

    MathSciNet  MATH  Google Scholar 

  • Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 84(20), 4737 (2000)

    ADS  Google Scholar 

  • Torrieri, D.: Principles of Spread-Spectrum Communication Systems, vol. 1. Springer, Berlin (2005)

    Google Scholar 

  • Townsend, P.D.: Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing. Electron. Lett. 33(3), 188–190 (1997)

    ADS  MathSciNet  Google Scholar 

  • Townsend, P.D., Thompson, I.: A quantum key distribution channel based on optical fibre. J. Mod. Opt. 41(12), 2425–2433 (1994)

    ADS  Google Scholar 

  • Walenta, N., Burg, A., Caselunghe, D., Constantin, J., Gisin, N., Guinnard, O., Houlmann, R., Junod, P., Korzh, B., Kulesza, N., et al.: A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing. New J. Phys. 16(1), 013047 (2014)

    ADS  Google Scholar 

  • Wang, Xiang-Bin, Hiroshima, Tohya, Tomita, Akihisa, Hayashi, Masahito: Quantum information with Gaussian states. Phys. Rep. 448(1–4), 1–111 (2007)

    ADS  MathSciNet  Google Scholar 

  • Wang, C., Huang, D., Huang, P., Lin, D., Peng, J., Zeng, G.: 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel. Sci. Rep. 5(1), 1–8 (2015)

    Google Scholar 

  • Xiao, S., Khan, M.H., Shen, H., Qi, M.: Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm. J. Lightwave Technol. 26(2), 228–236 (2008)

    ADS  Google Scholar 

  • Yoshino, K.-I., Fujiwara, M., Tanaka, A., Takahashi, S., Nambu, Y., Tomita, A., Miki, S., Yamashita, T., Wang, Z., Sasaki, M., et al.: High-speed wavelength-division multiplexing quantum key distribution system. Opt. Lett. 37(2), 223–225 (2012)

    ADS  Google Scholar 

  • You, J.Q., Nori, F.: Superconducting circuits and quantum information. (2006) arXiv preprint quant-ph/0601121

  • You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474(7353), 589–597 (2011)

    ADS  Google Scholar 

  • Zhang, J., Liu, Y-x, Özdemir, Ş.K., Wu, R.-B., Gao, F., Wang, X.-B., Yang, L., Nori, F., : Quantum internet using code division multiple access. Sci. Rep. 3, 2211 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Banerjee, S. Quantum communication using code division multiple access network. Opt Quant Electron 52, 381 (2020). https://doi.org/10.1007/s11082-020-02494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02494-3

Keywords

Navigation