Skip to main content
Log in

Application of TDM and FDM methods in TDLAS based multi-gas detection

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Multi-gas tunable diode laser absorption spectroscopy (TDLAS) system based on time division multiplexing (TDM) demodulation technology which combine with frequency division multiplexing (FDM) technology is proposed, called F-TDM (frequency- time division multiplexing) system. In addition, traditional TDM technology and FDM technology are introduced to analyze and compare their performance. As for the performance of F-TDM system, multi-gas detection of CH4 and C2H2 has been accomplished with minimum detection limits of 10.24 ppmv for CH4 at 1653.72 nm and 0.763 ppmv for C2H2 at 1532.83 nm respectively. The relationships (CH4: R-square = 0.9989; C2H2: R-square = 0.9995) between gas concentration and second harmonic signal amplitude are proved as a good linear response. It is consistent with the data obtained by traditional TDM and FDM demodulation methods, indicating that the F-TDM system is feasible. By comparison, it is known that different methods have their advantages in different applications. The TDM system uses less equipment and is the most cost-effective. The system based on FDM technology is the most time-saving. The F-TDM system is a compromise method that combines the advantages of both and has no obvious disadvantage at the detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61475085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Chang, J., Chen, X. et al. Application of TDM and FDM methods in TDLAS based multi-gas detection. Opt Quant Electron 53, 195 (2021). https://doi.org/10.1007/s11082-021-02844-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02844-9

Keywords

Navigation