Skip to main content
Log in

Refractive index sensor based on dual side-coupled rectangular resonators and nanorods array for medical applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a metal–insulator–metal plasmonic sensor with one rectangular and two square nanorod array resonators that shows a Fano resonance is analyzed and suggested. The finite difference time domain method is used to investigate the output spectra and sensing characteristics. The transmission spectra show a sharp and asymmetric shape, because of the narrow-band spectrum and broad-band one affected by two square resonators and rectangular cavity. The coupled mode theory is used to describe the Fano resonance effect. The Fano resonance shows a notable red shift with an increasing dielectric material refractive index. The results show that with optimizing the physical parameters, the sensitivity is attained 1090 nm/RIU, and water and Ethanol temperature sensitivities are achieved as high as 0.087 nm/ °C and 0.475 nm/ °C, respectively. The corresponding figure of merit value is 2 × 104 RIU−1. The proposed structure can be used in photonic integrated devices to perform the sensing operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alipour, A., Farmani, A., Mir, A.: SiO2–silver metasurface architectures for ultrasensitive and tunable Plasmonic biosensing. Plasmonics 15(6), 1935–1942 (2020)

    Article  Google Scholar 

  • Ameling, R., Langguth, L., Hentschel, M., Mesch, M., Braun, P.V., Giessen, H.: Cavity-enhanced localized plasmon resonance sensing. Appl. Phys. Lett. 97(25), 253116 (2010)

    Article  ADS  Google Scholar 

  • Bashkatov, A.N., Genina, E.A.: Water refractive index in dependence on temperature and wavelength: a simple approximation. In: Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, vol. 5068, pp. 393–395. International Society for Optics and Photonics (2003)

  • Becker, J., Trügler, A., Jakab, A., Hohenester, U., Sönnichsen, C.: The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2), 161–167 (2010)

    Article  Google Scholar 

  • Boltasseva, A., Atwater, H.A.: Low-loss plasmonic metamaterials. Science 331(6015), 290–291 (2011)

    Article  ADS  Google Scholar 

  • Butt, M.A., Khonina, S.N., Kazanskiy, N.L.: Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator. Waves Random Complex Media 30(2), 292–299 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Danaie, M., Shahzadi, A.: Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14(6), 1453–1465 (2019)

    Article  Google Scholar 

  • Gai, H., Wang, J., Tian, Q.: Modified Debye model parameters of metals applicable for broadband calculations. Appl. Opt. 46(12), 2229–2233 (2007)

    Article  ADS  Google Scholar 

  • Guan, J., Xia, S., Zhang, Z., Wu, J., Meng, H., Yue, J., Xiang, Z., Lingling, W., Wen, S.: Two switchable plasmonically induced transparency effects in a system with distinct graphene resonators. Nanoscale Res. Lett. 15(1), 1–13 (2020)

    Google Scholar 

  • Hajshahvaladi, L., Kaatuzian, H., Danaie, M.: Design and analysis of a plasmonic demultiplexer based on band-stop filters using double-nanodisk-shaped resonators. Opt. Quant. Electron. 51(12), 391 (2019)

    Article  Google Scholar 

  • Hocini, A., Khedrouche, D., Melouki, N.: A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal–insulator–metal structure. Opt. Quant. Electron. 52(7), 1–10 (2020)

    Article  Google Scholar 

  • Hu, F., Yi, H., Zhou, Z.: Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt. Lett. 36(8), 1500–1502 (2011)

    Article  ADS  Google Scholar 

  • Jaculbia, R.B., Imada, H., Miwa, K., Iwasa, T., Takenaka, M., Yang, B., Kazuma, E., Hayazawa, N., Taketsugu, T., Kim, Y.: Single-molecule resonance Raman Effect in a plasmonic nanocavity. Nat. Nanotechnol. 15(2), 105–110 (2020)

    Article  ADS  Google Scholar 

  • Kamada, S., Okamoto, T., El-Zohary, S.E., Haraguchi, M.: Design optimization and fabrication of Mach-Zehnder interferometer based on MIM plasmonic waveguides. Opt. Express 24(15), 16224–16231 (2016)

    Article  ADS  Google Scholar 

  • Kekatpure, R.D., Hryciw, A.C., Barnard, E.S., Brongersma, M.L.: Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt. Express 17(26), 24112–24129 (2009)

    Article  ADS  Google Scholar 

  • Kirchain, R., Kimerling, L.: A roadmap for nanophotonics. Nat. Photonics 1(6), 303–305 (2007)

    Article  ADS  Google Scholar 

  • Kubo, W., Fujikawa, S.: Au double nanopillars with nanogap for plasmonic sensor. Nano Lett. 11(1), 8–15 (2011)

    Article  ADS  Google Scholar 

  • Li, Q., Wang, T., Su, Y., Yan, M., Qiu, M.: Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18(8), 8367–8382 (2010)

    Article  ADS  Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)

    Article  ADS  Google Scholar 

  • Liu, Z., Ding, L., Yi, J., Wei, Z., Guo, J.: Design of a multi-bits input optical logic device with high intensity contrast based on plasmonic waveguides structure. Opt. Commun. 430, 112–118 (2019)

    Article  ADS  Google Scholar 

  • Lu, H., Liu, X., Mao, D., Wang, G.: Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt. Lett. 37(18), 3780–3782 (2012)

    Article  ADS  Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamental and Applications. Springer US, New York (2007)

    Book  Google Scholar 

  • Moradiani, F., Farmani, A., Mozaffari, M.H., Seifouri, M., Abedi, K.: Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Opt. Commun. 474, 126178 (2020)

    Article  Google Scholar 

  • Nasirifar, R., Danaie, M., Dideban, A.: Dual channel optical fiber refractive index sensor based on surface plasmon resonance. Optik 186, 194–204 (2019)

    Article  ADS  Google Scholar 

  • Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P., Zhang, X.: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2(8), 496–500 (2008)

    Article  Google Scholar 

  • Park, J.H., Ndao, A., Cai, W., Hsu, L., Kodigala, A., Lepetit, T., Lo, Y.H., Kanté, B.: Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys. 16(4), 462–468 (2020)

    Article  Google Scholar 

  • Piao, X., Yu, S., Koo, S., Lee, K., Park, N.: Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Opt. Express 19(11), 10907–10912 (2011)

    Article  ADS  Google Scholar 

  • Qin, C., Guo, Y., Seo, J., Shuai, Y., Lee, J., Lee, B.J.: Absorption characteristics of a metal-insulator-metal nanodisk for solar thermal applications. Opt. Express 28(10), 15731–15743 (2020)

    Article  ADS  Google Scholar 

  • Rahman-Zadeh, F., Danaie, M., Kaatuzian, H.: Design of a highly sensitive photonic crystal refractive index sensor incorporating ring-shaped GaAs cavity. Opto-Electron. Rev. 27(4), 369–377 (2019)

    Article  ADS  Google Scholar 

  • Rahmatiyar, M., Danaie, M., Afsahi, M.: Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt. Quant. Electron. 52(3), 1–19 (2020)

    Article  Google Scholar 

  • Rakhshani, M.R.: Fano resonances based on plasmonic square resonator with high figure of merits and its application in glucose concentrations sensing. Opt. Quant. Electron. 51(9), 287 (2019a)

    Article  Google Scholar 

  • Rakhshani, M.R.: Refractive index sensor based on concentric triple racetrack resonators side-coupled to metal–insulator–metal waveguide for glucose sensing. JOSA B 36(10), 2834–2842 (2019b)

    Article  ADS  Google Scholar 

  • Rakhshani, M.R.: Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups. Photonics Nanostruct. Fundam. Appl. 39, 100768 (2020a)

    Article  Google Scholar 

  • Rakhshani, M.R.: Three-dimensional polarization-insensitive perfect absorber using nanorods array for sensing and imaging. IEEE Sens. J. 20(23), 14166–14172 (2020b)

    Article  ADS  Google Scholar 

  • Rakhshani, M.R.: Tunable and sensitive refractive index sensors by plasmonic absorbers with circular arrays of nanorods and nanotubes for detecting cancerous cells. Plasmonics 15(6), 2071–2080 (2020c)

    Article  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators. J. Mod. Opt. 63(11), 1078–1086 (2016a)

    Article  ADS  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: High-sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity. IEEE Sens. J. 16(9), 3041–3046 (2016b)

    Article  ADS  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuators B Chem. 249, 168–176 (2017a)

    Article  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12(4), 999–1006 (2017b)

    Article  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection. Photon. Nanostruct. Fundam. Appl. 32, 28–34 (2018a)

    Article  ADS  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection. IEEE Trans. Nanotechnol. 17(3), 475–481 (2018b)

    Article  ADS  Google Scholar 

  • Rakhshani, M.R., Tavousi, A., Mansouri-Birjandi, M.A.: Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl. Opt. 57(27), 7798–7804 (2018)

    Article  ADS  Google Scholar 

  • Rej, S., Mascaretti, L., Santiago, E.Y., Tomanec, O., Kment, S., Wang, Z., Zbořil, R., Fornasiero, P., Govorov, A.O., Naldoni, A.: Determining plasmonic hot electrons and photothermal effects during H2 evolution with TiN–Pt nanohybrids. ACS Catal. 10(9), 5261–5271 (2020)

    Article  Google Scholar 

  • Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A., Nuzzo, R.G.: Nanostructured plasmonic sensors. Chem. Rev. 108(2), 494–521 (2008)

    Article  Google Scholar 

  • Sundari, S.T., Srinivasu, K., Dash, S., Tyagi, A.K.: Temperature evolution of optical constants and their tuning in silver. Solid State Commun. 167, 36–39 (2013)

    Article  ADS  Google Scholar 

  • Tavousi, A., Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt. Commun. 429, 166–174 (2018)

    Article  ADS  Google Scholar 

  • Wei, W., Zhang, X., Ren, X.: Plasmonic circular resonators for refractive index sensors and filters. Nanoscale Res. Lett. 10(1), 1–6 (2015)

    Article  ADS  Google Scholar 

  • Xia, S.X., Zhai, X., Huang, Y., Liu, J.Q., Wang, L.L., Wen, S.C.: Graphene surface plasmons with dielectric metasurfaces. J. Lightwave Technol. 35(20), 4553–4558 (2017)

    Article  ADS  Google Scholar 

  • Xia, S.X., Zhai, X., Wang, L.L., Wen, S.C.: Polarization-independent plasmonic absorption in stacked anisotropic 2D material nanostructures. Opt. Lett. 45(1), 93–96 (2020)

    Article  ADS  Google Scholar 

  • Xu, R., Liu, X., Lin, Y.S.: Tunable ultra-narrowband terahertz perfect absorber by using metal–insulator–metal microstructures. Results Phys. 13, 102176 (2019)

    Article  Google Scholar 

  • Zhu, J.H., Wang, Q.J., Shum, P., Huang, X.G.: A simple nanometeric plasmonic narrow-band filter structure based on metal–insulator–metal waveguide. IEEE Trans. Nanotechnol. 10(6), 1371–1376 (2011)

    Article  ADS  Google Scholar 

  • Zhu, W., Esteban, R., Borisov, A.G., Baumberg, J.J., Nordlander, P., Lezec, H.J., Aizpurua, J., Crozier, K.B.: Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7(1), 1–14 (2016)

    Article  Google Scholar 

  • Zou, S., Wang, F., Liang, R., Xiao, L., Hu, M.: A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: A review. IEEE Sens. J. 15(2), 646–650 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by University of Zabol Grant No. UOZ-GR-6230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rakhshani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhshani, M.R. Refractive index sensor based on dual side-coupled rectangular resonators and nanorods array for medical applications. Opt Quant Electron 53, 232 (2021). https://doi.org/10.1007/s11082-021-02857-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02857-4

Keywords

Navigation