Skip to main content
Log in

Rotary penetration drag of surface plasmon polaritons at atomic and nano-composite media

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Surface plasmon polaritons are investigated at the interface of cesium atomic medium and silver-silica nano-composite. The polaritons rotary drag at the propagation length and penetration depth is significantly modified. The ratio of the wavelengths of surface plasmon polaritons and the free space electromagnetic waves are nearly 0.5810. The group velocity of plasmon polaritons is higher than the speed of light and is ranging from \(-6\times 10^9\) to \(1\times 10^{10}\) which shows higher superluminality in a small propagation length. The penetration depths of polaritons in cesium and nano-composite are \(1.5\times 10^{-10}m\) and \(2\times 10^{-7}m\) and vary with strength of the control fields. The rotary plasmon polaritons drag is in the rang of \(\pm 50\) to \(\pm 60\) nano radian at the propagation length of polaritons. The rotary plasmon polartions drag at the penetration depths of the atomic and the silver nano-composite media is noted in the range of \(\pm 10\) atto radian and \(\pm 10\) femto radian respectively. The results may find applications in modifying the sensor coding technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali, S., Idrees, M., Bacha, B.A., Ullah, A., Haneef, M.: Efficient two-dimensional atom localization in a five-level conductive chiral atomic medium via birefringence beam absorption spectrum. Commun. Theor. Phys. 73, 015102 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Amanda, J., Haes, C.L., Haynes, A.D., McFarland, G.C., Schatz, R.P., Van, D.S.Z.: Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bull. 30, 368–375 (2005)

    Article  Google Scholar 

  • Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Duyne, R.P.V.: Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Article  ADS  Google Scholar 

  • Arnold, S.F., Gibson, G., Boyd, R.W., Padgett, M.J.: Rotary photon drag enhanced by a slow-light medium. Science 333, 65–7 (2011)

    Article  ADS  Google Scholar 

  • Atwaterand, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–2013 (2010)

    Article  ADS  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  • Cai, W., Genov, D.A., Shalaev, V.M.: Superlens based on metal-dielectric composites. Phys. Rev. B 72, 193101 (2005)

    Article  ADS  Google Scholar 

  • Cao, H., Dogariu, A., Wang, L.J.: Negative group delay and pulse compression in superluminal pulse propagation. IEEEJ. Sel. Top. Quant. Electron. 9, 52–58 (2003)

    Article  ADS  Google Scholar 

  • Chu, S., Wong, S.: Linear Pulse Propagation in an Absorbing Medium. Phys. Rev. Lett. 48, 738 (1982)

    Article  ADS  Google Scholar 

  • Din, R., Badshah, F., Ahmad, I., Ge1, G.Q.: Tunable surface plasmon polaritons at the surfaces of nanocomposite media. EPL 122, 17001 (2018)

  • Ditlbacher, H., Krenn, J.R., Schider, G., Leitner, A., Aussenegg, F.R.: Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762 (2002)

    Article  ADS  Google Scholar 

  • Dogariu, A., Kuzmich, A., Wang, L.J.: Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity. Phys. Rev. A 63, 053806 (2001)

    Article  ADS  Google Scholar 

  • Fizeau, A.H.L., Hebd, C.R., Kauffman, H.: Knots and Physics, 3rd ed. Seances Acad. Sci 33, 349–354 (2000). Singapore

  • Fresnel, A.J.: Ann. Chim. Phys. 9 57; C. C. Adams, American Mathematical Society, Providence, RI (2004)

  • Gobin, A.M., Lee, M.H., Halas, N.J., James, W.D., Drezek, R.A., West, J.L.: Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy. Nano Lett. 7(7), 1929–1934 (2007)

    Article  ADS  Google Scholar 

  • Goykhman, I., Desiatov, B., Khurgin, J.B., Shappir, J., Levy, U.: Locally Oxidized Silicon Surface-Plasmon Schottky Detector for Telecom Regime. Nano Lett. 11, 2219–2224 (2011)

    Article  ADS  Google Scholar 

  • Han, Z., Bozhevolny, S.I.: Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. 76, 016402 (2013)

    Article  ADS  Google Scholar 

  • Hong, J.X., Wei, B.L., Wei, Z., Zheng, G.D., Tie, J.C.: Efficient manipulation of surface plasmon polariton waves in graphene. Appl. Phys. Lett. 100, 243110 (2012)

    Article  ADS  Google Scholar 

  • Idrees, M., Bacha, B.A., Javed, M., Ullah, S.A.: Precise position measurement of an atom using superposition of two standing wave fields. Laser Phys. 27, 045202 (2017)

    Article  ADS  Google Scholar 

  • Idrees, M., Kalsoom, H., Bacha, B.A., Ullah, A., Wang, L.G.: Continuum and undefine hole burning regions via pulse propagation in a four-level Doppler broadened atomic system. Eur. Phys. J. Plus 135, 1–11 (2020)

    Article  Google Scholar 

  • Idrees, M., Kalsoom, H., Bacha, B.A., Ullah, A., Wang, L.G.: Commun. Theor. Phys. 73, 045102 (2021). ((6pp))

    Article  ADS  Google Scholar 

  • Idrees, M., Ullah, M., Bacha, B.A., Ullah, A., Wang, L.G.: High resolution two-dimensional atomic microscopy in a tripod-type four-level atomic medium via standing wave fields. Laser Phys. 30, 115402 (2020)

    Article  ADS  Google Scholar 

  • Idrees, M., Ullah, M., Bacha, B.A., Ullah, A., Wang, L.G.: High-Resolution Two-Dimensional Atomic Localization Via Tunable Surface Plasmon Polaritons. Plasmonics 8, 1404 (2021)

    Google Scholar 

  • Iqbal, H., Idrees, M., Javed, M., Bacha, B.A., Khan, S., Ullah, S.A.: Goos-hanchen Shift from Cold and Hot Atomic Media Using Kerr Nonlinearity. J. Russ. Laser Res. 38, 426 (2017)

    Article  Google Scholar 

  • Juan, M.L., Righini, M., Quidant, R.: Plasmon nano-optical tweezers. Nat. Photon. 5, 349–356 (2011)

    Article  ADS  Google Scholar 

  • Khan, N., Bacha, B.A., Iqbal, A., Rahman, A.U., Afaq, A.: Erratum: Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons. Phys. Rev. A 96, 013848 (2017)

    Article  ADS  Google Scholar 

  • Khan, M.I., Idrees, M., Bacha, B.A., Khan, H., Ullah, A., Haneef, M.: Optical soliton through induced cesium doppler broadening medium. Phys. Scr. 95, 085102 (2020)

    Article  ADS  Google Scholar 

  • Khan, M., Idrees, M., Bacha, B.A., Ullah, A., Haneef, M.: Tunnelling based birefringent rotary photon dragging through induced chiral medium. Phys. Scr. 96, 055101 (2021)

    Article  ADS  Google Scholar 

  • Kneipp, K.: Surface-enhanced Raman scattering. Phys. Today 60, 40 (2007)

    Article  Google Scholar 

  • Kocharovskaya, O.A., Khanin, Y.I.: Population trapping and coherent bleaching of a three-level medium by a periodic train of ultrashort pulses. Sov. Phys. JETP 63, 945 (1986)

    Google Scholar 

  • Kuan, P.C., Huang, C., Chan, W.S., Kosen, S., Lan, S.Y.: Large Fizeaul light-dragging effect in a moving electromagnetically induced transparent medium. Nat. Commun 7, 13030 (2016)

    Article  ADS  Google Scholar 

  • Kurosawa, H., Ishihara, T.: Surface plasmon drag effect in a dielectrically modulated metallic thin film. Opt. Exp. 20, 1561–1574 (2012)

    Article  ADS  Google Scholar 

  • Linic, S., Christopher, P., Ingram, D.B.: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011)

    Article  ADS  Google Scholar 

  • Lukin, M.D., Imamoglu, A.: Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001)

    Article  ADS  Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007)

    Book  Google Scholar 

  • Mecklenburg, M., Mecklenburg, M., Hubbard, W.A., White, E.R., Dhall, R., Cronin, S.B., Aloni, S., Regan, B.C.: Thermal measurement. Nanoscale temperature mapping in operating microelectronic devices. Science 347(6222), 629–632 (2015)

    Article  ADS  Google Scholar 

  • Mendoza, J., Reyes, J.A., Avendano, Z.G.: Phys. Rev. A 94, 053839 (2016)

    Article  ADS  Google Scholar 

  • Metcalf, H.J., Straten, P.V.D.: Laser Cooling and Trapping. Springer-Verlag (1999)

    Book  Google Scholar 

  • Ozbay, E.: Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science 311, 189–193 (2006)

    Article  ADS  Google Scholar 

  • Piredda, G., Smith, D.D., Wendling, B., Boyd, R.W.: J. Opt. Soc. Am. B 25, 945 (2008)

    Article  ADS  Google Scholar 

  • Rayleigh, L.: On the Velocity of Light. Nature 24, 382 (1881)

    Article  ADS  Google Scholar 

  • Reece, P.J.: Plasmonics-fine optical tweezers. Nat. Photon. 2, 333–334 (2008)

    Article  ADS  Google Scholar 

  • Segard, B., Macke, B.: Observation of negative velocity pulse propagation. Phys. Lett. A 109, 213–2016 (1985)

    Article  ADS  Google Scholar 

  • Shah, S.A., Ullah, S., Idrees, M., Bacha, B.A., Ullah, A.: Surface plasmon induced atom localization in a tripod-type four level atomic system. Phys. Scr. 94, 035401 (2017)

    Article  ADS  Google Scholar 

  • Steinberg, A.M., Chiao, R.Y.: Dispersionless, highly superluminal propagation in a medium with a gain doublet. Phys. Rev. A 49, 2071 (1994)

    Article  ADS  Google Scholar 

  • Ullah, S., Wahid, U., Bacha, B.A., Ullah, A., Ullah, Z.: Particle microscopy by surface plasmon polariton waves at the interface of dielectric and silver silica nano-composites. Phys. Scr. 96, 015104 (2021)

    Article  ADS  Google Scholar 

  • Vakil, A., Engheta, N.: Transformation Optics Using Graphene. Science 332, 1291–1294 (2011)

    Article  ADS  Google Scholar 

  • Wang, J., Lau, W.M., Li, Q.: Effects of particle size and spacing on the optical properties of gold nanocrystals in alumina. J. Appl. Phys. 97, 114303 (2005)

    Article  ADS  Google Scholar 

  • Withayachumnankul, W., Fischer, B.M., Ferguson, B., Davis, B.R., Abbott, D.: A Systemized View of Superluminal Wave Propagation. Proc. IEEE 98, 1775–1786 (2010)

    Article  Google Scholar 

  • Ye, D., Zheng, G., Wang, J., Wang, Z., Qiao, S., Huangfu, J., Ran, L.: Negative group velocity in the absence of absorption resonance. Sci. Rep. 3, 1628 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakth Amin Bacha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawab, H., Usman, M., Idrees, M. et al. Rotary penetration drag of surface plasmon polaritons at atomic and nano-composite media. Opt Quant Electron 53, 311 (2021). https://doi.org/10.1007/s11082-021-02894-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02894-z

Keywords

Navigation