Skip to main content
Log in

The optical soliton solutions of generalized coupled nonlinear Schrödinger-Korteweg-de Vries equations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The quest for exact solutions to nonlinear partial differential equations has become a remarkable research subject in recent years. In this study, we employ the Kudryashov method and sub-equation method to retrieve the bright and dark soliton solutions of the generalized nonlinear Schrödinger-Korteweg-de Vries equations. Other soliton-type solutions like the periodic, singular, and rational solutions are achieved as well. These coupled equations occur in phenomena of interactions between short and long dispersive waves which are significant in various fields of applied sciences and engineering. The solutions obtained in this study have been verified with the help of the Mathematica package software. Furthermore, we present graphical representations of the solutions of bright and dark solitons for a useful understanding of the behavior and physical structures of the coupled equations considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Ablowitz, M.J.: Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  • Akinyemi, L.: q-Homotopy analysis method for solving the seventh-order time-fractional Lax’s Korteweg-de Vries and Sawada-Kotera equations. Comp. Appl. Math. 38(4), 1–22 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., Iyiola, O.S.: Exact and approximate solutions of time-fractional models arising from physics via Shehu transform. Math. Meth. Appl. Sci. 43(12), 7442–7464 (2020). https://doi.org/10.1002/mma.6484

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., Huseen, S.N.: A powerful approach to study the new modified coupled Korteweg-de Vries system. Math. Comput. Simul. 177, 556–567 (2020a). https://doi.org/10.1016/j.matcom.2020.05.021

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., Iyiola, O.S.: A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations. Adv. Differ. Equ. 2020, 1–27 (2020b). https://doi.org/10.1186/s13662-020-02625-w

    Article  MathSciNet  Google Scholar 

  • Akinyemi, L., Iyiola, O.S., Akpan, U.: Iterative methods for solving fourth- and sixth order time-fractional Cahn-Hillard equation. Math. Meth. Appl. Sci. 43(7), 4050–4074 (2020c). https://doi.org/10.1002/mma.6173

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L.: A fractional analysis of Noyes-Field model for the nonlinear Belousov-Zhabotinsky reaction. Comp. Appl. Math. 39, 1–34 (2020d). https://doi.org/10.1007/s40314-020-01212-9

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., Senol, M., Huseen, S.N.: Modified homotopy methods for generalized fractional perturbed Zakharov-Kuznetsov equation in dusty plasma. Adv. Differ. Equ. 2021(1), 1–27 (2021e). https://doi.org/10.1186/s13662-020-03208-5

    Article  MathSciNet  Google Scholar 

  • Akinyemi, L., Senol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021). https://doi.org/10.1016/j.matcom.2020.10.017

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., Senol, M., Rezazadeh, H., Ahmad, H., Wang, H.: Abundant optical soliton solutions for an integrable (2+1)-dimensional nonlinear conformable Schrödinger system. Res. Phys. 25, 1–14 (2021). https://doi.org/10.1016/j.rinp.2021.104177

    Article  Google Scholar 

  • Akinyemi, L., Hosseini, K., Salahshour, S.: The bright and singular solitons of (2+1)-dimensional nonlinear Schrödinger equation with spatio-temporal dispersions. Optik 242, 1–10 (2021). https://doi.org/10.1016/j.ijleo.2021.167120

    Article  Google Scholar 

  • Akinyemi, L., Senol, M., Mirzazadeh, M., Eslami, M.: Optical solitons for weakly nonlocal Schrödinger equation with parabolic law nonlinearity and external potential. Optik 230, 1–9 (2021). https://doi.org/10.1016/j.ijleo.2021.166281

    Article  Google Scholar 

  • Albert, J., Angulo Pava, J.: Existence and stability of ground-state solutions of a Schrödinger-KdV system. Proc. Roy. Soc. Edinburgh Sect. A 133(5), 987–1029 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Ali Akbar, M., Akinyemi, L., Yao, S.-W., Jhangeer, A., Rezazadeh, H., Khater, M.M.A., Ahmad, H., Inc, M.: Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Res. Phys. 25, 1–10 (2021). https://doi.org/10.1016/j.rinp.2021.104228

    Article  Google Scholar 

  • Alquran, M., Al-Khaled, K., Chattopadhyay, J.: Analytical solutions of fractional population diffusion model: residual power series. Nonlinear Stud. 22(1), 31–39 (2015)

    MathSciNet  MATH  Google Scholar 

  • Az-Zo’bi, E.A., AlZoubi, W.A., Akinyemi, L., et al.: Abundant closed-form solitons for time-fractional integro-differential equation in fluid dynamics. Opt. Quant. Electron 53(132), 1–16 (2021a). https://doi.org/10.1007/s11082-021-02782-6

    Article  Google Scholar 

  • Az-Zo’bi, E.A., Alzoubi, W.A., Akinyemi, L., Senol, M., Masaedeh, B.S.: A variety of wave amplitudes for the conformable fractional (2+1)-dimensional Ito equation. Modern Phys. Lett. B 35, 1–13 (2021b). https://doi.org/10.1142/S0217984921502547

  • Bekir, A., Guner, O.: Exact solutions of nonlinear fractional differential equations by \(G^{\prime }/{G}\)-expansion method. Chinese Phys. B. 22(11), 1–6 (2013)

    Article  ADS  Google Scholar 

  • Biswas, A., Milovic, D.: Bright and dark solitons of the generalized nonlinear Schrödinger’s equation. Commun. Non. Sci. Num. Simulat. 15, 1473–1484 (2010)

    Article  MATH  Google Scholar 

  • Biswas, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons having weak non-local nonlinearity by two integration schemes. Optik 64, 380–384 (2018)

    Article  ADS  Google Scholar 

  • Biswas, A.: Conservation laws for optical solitons with anti-cubic and generalized anti-cubic nonlinearities. Optik 176, 198–201 (2019)

    Article  ADS  Google Scholar 

  • Colorado, E.: Existence of bound and ground states for a system of coupled nonlinear Schrödinger-KdV equations. C. R. Acad. Sci. Paris Ser. I Math. 353(6), 511–516 (2015)

  • Colorado, E.: On the existence of bound and ground states for a system of coupled nonlinear Schrödinger-Korteweg-de Vries Equations. Adv. Nonlinear Anal. 6(4), 407–426 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Corcho, A.J., Linares, F.: Well-posedness for the Schrödinger-Korteweg-de Vries system. Trans. Amer. Math. Soc. 359(9), 4089–4106 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Dai, H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mechanica 127, 193–207 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Deconinck, B., Nguyen, N.V., Segal, B.L.: The interaction of long and short waves in dispersive media. J. Phys. A: Math. Theor. 49, 1–10 (2016). https://doi.org/10.1088/1751-8113/49/41/415501

    Article  MathSciNet  MATH  Google Scholar 

  • El-Tawil, M.A., Huseen, S.N.: The Q-homotopy analysis method (q-HAM). Int. J. Appl. Math. Mech. 8(15), 51–75 (2012)

    Google Scholar 

  • Funakoshi, M., Oikawa, M.: The resonant interaction between a long internal gravity wave and a surface gravity wave packet. J. Phys. Soc. Japan 52(1), 1982–1995 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  • He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Meth. Appl. Mech. Eng. 167, 57–68 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hong, W.P.: Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms. Opt. Commun. 194, 217–223 (2001)

    Article  ADS  Google Scholar 

  • Inc, M., Khan, M.N., Ahmad, I., Yao, S.W., Ahmad, H., Thounthong, P.: Analysing time-fractional exotic options via efficient local meshless method. Res. Phys. 19, 1–6 (2020a)

    Google Scholar 

  • Inc, M., Rezazadeh, H., Vahidi, J., Eslami, M., Akinlar, M.A., Ali, M.N., Chu, Y.M.: New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Math. 5(6), 6972–6984 (2020b)

    Article  MathSciNet  Google Scholar 

  • Jafari, H., Tajadodi, H., Baleanu, D.: Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations. J. Comput. Nonlinear Dyn. 9(2), 021019–021021 (2014)

    Article  Google Scholar 

  • Karpman, V.I.: Non-Linear Waves in Dispersive Media. Pergamon Press, Oxford (1975)

    Book  Google Scholar 

  • Kudryashov, N.A.: On one method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2248–2253 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kudryashov, N.A.: Method for finding highly dispersive optical solitons of nonlinear differential equation. Optik 206, 1–9 (2020a)

    Google Scholar 

  • Kudryashov, N.A.: Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 371, 1–7 (2020b)

    MATH  Google Scholar 

  • Kudryashov, N.A., Antonova, E.V.: Solitary waves of equation for propagation pulse with power nonlinearities. Optik 217, 1–5 (2020)

    Article  Google Scholar 

  • Lu, D., Zhang, Z.: Exact solutions for fractional nonlinear evolution equations by the \(F\)-expansion method. Inter. J. Nonlinear Sci. 24(2), 96–103 (2017)

    MathSciNet  MATH  Google Scholar 

  • Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M., Akinyemi, L., Senol, M., Hosseini, K.: A variety of solitons to the sixth-order dispersive (3+1)-dimensional nonlinear time-fractional Schrodinger equation with cubic-quintic-septic nonlinearities. Optik 241, 1–15 (2021). https://doi.org/10.1016/j.ijleo.2021.166318

    Article  Google Scholar 

  • Nguyen, N.V., Liu, C.: Some models for the interaction of long and short waves in dispersive media: part I-derivation. Water Waves 2, 327–359 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rezazadeh, H.: New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Optik 167, 218–227 (2018)

    Article  ADS  Google Scholar 

  • Rezazadeh, H., Inc, M., Baleanu, D.: New solitary wave solutions for variants of \((3+1)\)-dimensional Wazwaz-Benjamin-Bona-Mahony equations. Front. Phys. 8, 1–11 (2020)

    Article  Google Scholar 

  • Rezazadeh, H., Ullah, N., Akinyemi, L., Shah, A., Mirhosseini-Alizamin, S.M., Chu, Y.M., Ahmad, H.: Optical soliton solutions of the generalized non-autonomous nonlinear Schrödinger equations by the new Kudryashov’s method. Results Phys. 24, 1–7 (2021). https://doi.org/10.1016/j.rinp.2021.104179

    Article  Google Scholar 

  • Senol, M., Dolapci, I.T.: On the perturbation-iteration algorithm for fractional differential equations. J. King Saud Univ.-Sci. 28, 69–74 (2016)

    Article  Google Scholar 

  • Senol, M., Atpinar, S., Zararsiz, Z., Salahshour, S., Ahmadian, A.: Approximate solution of time-fractional fuzzy partial differential equations. Comput. Appl. Math. 38, 1–18 (2019a)

    Article  MathSciNet  MATH  Google Scholar 

  • Senol, M., Iyiola, O.S., Daei Kasmaei, H., Akinyemi, L.: Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent-Miodek system with energy-dependent Schrödinger potential. Adv. Differ. Equ. 2019, 1–21 (2019b)

    Article  Google Scholar 

  • Senol, M.: New analytical solutions of fractional symmetric regularized-long-wave equation. Revista Mexicana de Fisica 66(3), 297–307 (2020a)

    Article  MathSciNet  Google Scholar 

  • Senol, M.: Analytical and approximate solutions of \((2+1)\)-dimensional time-fractional Burgers-Kadomtsev-Petviashvili equation. Commun. Theor. Phys. 72, 1–11 (2020b)

    MathSciNet  MATH  Google Scholar 

  • Senol, M., Akinyemi, L., Ata, A., Iyiola, O.S.: Approximate and generalized solutions of conformable type Coudrey-Dodd-Gibbon-Sawada-Kotera equation. Internat. J. Modern Phys. B 35(02), 1–17 (2021). https://doi.org/10.1142/S0217979221500211

    Article  MathSciNet  MATH  Google Scholar 

  • Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation. Springer-Verlag, New York (1999)

    MATH  Google Scholar 

  • Triki, H., Biswas, A.: Dark solitons for a generalized nonlinear Schrödinger equation with parabolic law and dual-power law nonlinearities. Math. Meth. Appl. Sci. 34(8), 958–962 (2011)

    Article  MATH  Google Scholar 

  • Vahidi, J., Zekavatmand, S.M., Rezazadeh, H., Inc, M., Akinlar, M.A., Chu, Y.M.: New solitary wave solutions to the coupled Maccari’s system. Res. Phys. 21, 1–11 (2021)

    Google Scholar 

  • Wazwaz, A.M.: Solitons and periodic solutions for the fifth-order KdV equation. Appl. Math. Lett. 19, 1162–1167 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: Bright and dark optical solitons for \((2+1)\)-dimensional Schrödinger (NLS) equations in the anomalous dispersion regimes and the normal dispersive regimes. Optik 192, 1–5 (2019)

    Google Scholar 

  • Wazwaz, A.M.: Bright and dark optical solitons for \((3+1)\)-dimensional Schrödinger equation with cubic-quintic-septic nonlinearities. Optik 225, 1–5 (2021)

    Google Scholar 

  • Zhou, Q., Liu, L., Zhang, H., Mirzazadeh, M., Bhrawy, A.H., Zerrad, E., Moshokoa, S., Biswas, A.: Dark and singular optical solitons with competing nonlocal nonlinearities. Opt. Appl. 46, 79–86 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanre Akinyemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinyemi, L., Şenol, M., Akpan, U. et al. The optical soliton solutions of generalized coupled nonlinear Schrödinger-Korteweg-de Vries equations. Opt Quant Electron 53, 394 (2021). https://doi.org/10.1007/s11082-021-03030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03030-7

Keywords

Navigation