Skip to main content
Log in

On-Line Chain Partitions of Orders: A Survey

  • Published:
Order Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

On-line chain partition is a two-player game between Spoiler and Algorithm. Spoiler presents, point by point, a partially ordered set. Algorithm assigns incoming points (immediately and irrevocably) to the chains which constitute a chain partition of the order. The value of the game for orders of width w is a minimum number val(w) such that Algorithm has a strategy using at most val(w) chains on orders of width at most w. There are many recent results about variants of the general on-line chain partition problem. With this survey we attempt to give an overview over the state of the art in this field. As particularly interesting aspects of the article we see:

  • The sketch of the proof for the new sub-exponential upper bound of Bosek and Krawczyk: \({\rm{val}}(w)\leqslant w^{16\lg(w)}\).

  • The new lower bound: \({\rm{val}}(w)\geqslant(2-o(1))\binom{w+1}{2}\).

  • The inclusion of some simplified proofs of previously published results.

  • The comprehensive account on variants of the problem for interval orders.

  • The new lower bound for 2-dimensional up-growing orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Garg, V.K.: Efficient dependency tracking for relevant events in concurrent systems. Distrib. Comput. 19(3), 163–183 (2007)

    Article  MathSciNet  Google Scholar 

  2. Baier, B., Bosek, B., Micek, P.: On-line chain partitioning of up-growing interval orders. Order 24(1), 1–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosek, B.: On-Line Chain Partitioning Approach to Scheduling. PhD thesis, Jagiellonian University (2008)

  4. Bosek, B., Krawczyk, T.: The subexponential upper bound for an on-line chain partitioning problem. In: Proceedings of the 51th Symposium on Foundations of Computer Science, FOCS10, pp. 347–354 (2010)

  5. Bosek, B., Krawczyk, T., Szczypka, E.: First-fit algorithm for on-line chain partitioning problem. SIAM J. Discrete Math. 23, 1992–1999 (2010)

    Article  MathSciNet  Google Scholar 

  6. Broniek, P.: On-line chain partitioning as a model for real-time scheduling. In: Proceedings of the Second Workshop on Computational Logic and Applications (CLA 2004). Electron. Notes Theor. Comput. Sci., vol. 140, pp. 15–29 (electronic). Elsevier, Amsterdam (2005)

    Google Scholar 

  7. Chrobak, M., Ślusarek, M.: On some packing problem related to dynamic storage allocation. RAIRO Inform. Théor. Appl. 22(4), 487–499 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Dushnik, B., Miller, E.W.: Partially ordered sets. Am. J. Math. 63, 600–610 (1941)

    Article  MathSciNet  Google Scholar 

  9. Felsner, S.: On-line chain partitions of orders. Theor. Comput. Sci. 175(2), 283–292 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Felsner, S., Kloch, K., Matecki, G., Micek, P.: On-Line Chain Partitions of Up-Growing Semi-Orders (submitted)

  11. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psychol. 7, 144–149 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gyárfás, A., Lehel, J.: On-line and first fit colorings of graphs. J. Graph Theory 12(2), 217–227 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kierstead, H.A.: An effective version of Dilworth’s theorem. Trans. Am. Math. Soc. 268(1), 63–77 (1981)

    MathSciNet  MATH  Google Scholar 

  14. Kierstead, H.A.: Recursive ordered sets. In: Combinatorics and Ordered Sets. Contemp. Math., vol. 57, pp. 75–102. Amer. Math. Soc., Providence (1986)

  15. Kierstead, H.A.: The linearity of first-fit coloring of interval graphs. SIAM J. Discrete Math. 1(4), 526–530 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kierstead, H.A.: Coloring graphs on-line. In: Online Algorithms. Lecture Notes in Comput. Sci., vol. 1442, pP. 281–305. Springer, Berlin (1998)

    Chapter  Google Scholar 

  17. Kierstead, H.A., McNulty, G.F., Trotter, W.T.: A theory of recursive dimension for ordered sets. Order 1(1), 67–82 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kierstead, H.A., Penrice, S.G., Trotter, W.T.: On-line coloring and recursive graph theory. SIAM J. Discrete Math. 7(1), 72–89 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kierstead, H.A., Qin, J.: Coloring interval graphs with First-Fit. Discrete Math. 144(1–3), 47–57 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kierstead, H.A., Trotter, W.T.: An extremal problem in recursive combinatorics. Congr. Numer. 33, 143–153 (1981)

    MathSciNet  Google Scholar 

  21. Möhring, R.H.: Computationally tractable classes of ordered sets. In: Rival, I. (ed.) Algorithms and Order. NATO ASI Series C, vol. 255. Kluwer, Norwell (1989)

    Google Scholar 

  22. Narayanaswamy, N.S., Subhash Babu, R.: A note on first-fit coloring of interval graphs. Order 25(1), 49–53 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Automata, Languages and Programming. Lecture Notes in Comput. Sci., vol. 3580, pp. 1064–1075. Springer, Berlin (2005)

    Chapter  Google Scholar 

  24. Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory, pp. 139–146. Academic, New York (1969)

    Google Scholar 

  25. Scott, D., Suppes, P.: Foundational aspects of theories of measurement. J. Symb. Logic 23, 113–128 (1958)

    Article  MathSciNet  Google Scholar 

  26. Ślusarek, M.: Optimal on-line coloring of circular arc graphs. RAIRO Inform. Théor. Appl. 29(5), 423–429 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1992)

    MATH  Google Scholar 

  28. Trotter, W.T.: Partially ordered sets. In: Handbook of combinatorics, vol. 1, pp. 433–480. Elsevier, Amsterdam (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Micek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosek, B., Felsner, S., Kloch, K. et al. On-Line Chain Partitions of Orders: A Survey. Order 29, 49–73 (2012). https://doi.org/10.1007/s11083-011-9197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-011-9197-1

Keywords

Navigation