Skip to main content
Log in

Oxidation Mechanism of Steels in Liquid–Lead Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation mechanism of steels in liquid–lead alloys (lead or lead–bismuth) was studied. Parametric dependencies of oxidation, including oxygen-concentration effects, oxidation-rate constant and corrosion-rate effects, are analyzed. An oxidation model is developed based on the assumptions that the chemical reactions are at equilibrium locally, and scale removal is due to mass-transfer corrosion. The model shows that outward-iron diffusion in the solid phase (oxide layer) controls the oxide growth and mass-transfer rate in the flowing-boundary layer determines the corrosion-product transport in the liquid phase (liquid–lead alloy). The oxide thickness depends on both the parabolic oxide-growth-rate constant and the mass-transfer-corrosion rate. For long-term operation, the outer layer of a duplex-oxide layer can be completely removed by flowing lead alloys and it is expected that a pure-chromium-oxide layer forms underneath the Fe–Cr spinel if iron is heavily depleted. The oxide thickness and steel weight change are very different from those of the pure parabolic law and they are classified into distinct and universal categories. The model is validated partially by application to interpreting the measured oxide behavior of several steels in a lead-bismuth eutectic-test loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhang N. Li (2004) Corrosion 60 331 Occurrence Handle1:CAS:528:DC%2BD2cXjt1OlsL8%3D

    CAS  Google Scholar 

  2. G. Ilincev (2002) Nuclear Engineering and Design 217 167 Occurrence Handle1:CAS:528:DC%2BD38XkvFyntbo%3D

    CAS  Google Scholar 

  3. B. F. Gromov et al. (1997) Nuclear Engineering and Design 173 207 Occurrence Handle1:CAS:528:DyaK2sXntFWhs78%3D

    CAS  Google Scholar 

  4. N. Li (2002) Journal of Nuclear Materials 300 73 Occurrence Handle1:CAS:528:DC%2BD3MXptlaiurg%3D

    CAS  Google Scholar 

  5. F. H. Stott (1987) Reports on Progress in Physics 50 861 Occurrence Handle1:CAS:528:DyaL2sXlsF2gu7c%3D

    CAS  Google Scholar 

  6. Kofstad P., High Temperature Corrosion, (Elsevier Applied Science Publishers. Ltd. 1987) p. 413.

  7. F. Barbier G. Benamati C. Fazio A. Rusanov (2001) Journal of Nuclear Materials 295 149 Occurrence Handle1:CAS:528:DC%2BD3MXktVGkurk%3D

    CAS  Google Scholar 

  8. H. Glasbrenner J. Konys G. Mueller A. Rusanov (2001) Journal of Nuclear Materials 296 237 Occurrence Handle1:CAS:528:DC%2BD3MXkvVWlsL0%3D

    CAS  Google Scholar 

  9. F. Balbaud-Celerier P. Beloffre A. Terlain A. Rusanov (2002) J. Phys. IV. France 12 Pr8–177

    Google Scholar 

  10. C. Fazio I. Ricapito G. Scaddozzo G. Benamati (2003) Journal of Nuclear Materials 318 325 Occurrence Handle1:CAS:528:DC%2BD3sXjsFyhur4%3D

    CAS  Google Scholar 

  11. C. Fazio G. Benamati C. Martini G. Palombarini (2001) Journal of Nuclear Materials 296 243 Occurrence Handle1:CAS:528:DC%2BD3MXkvVWlsLo%3D

    CAS  Google Scholar 

  12. G. Benamati C. Fazio H. Piankova A. Rusanov (2002) Journal of Nuclear Materials 301 23 Occurrence Handle1:CAS:528:DC%2BD38XhtFKjs78%3D

    CAS  Google Scholar 

  13. G. Muller et al. (2002) Journal of Nuclear Materials 301 40 Occurrence Handle1:CAS:528:DC%2BD38XhtFKjs7o%3D

    CAS  Google Scholar 

  14. L. S. Crespo F. J. Martin Munoz D. G. Briceno (2001) Journal of Nuclear Materials 296 273

    Google Scholar 

  15. D. G. Briceno et al. (2002) Journal of Nuclear Materials 303 137

    Google Scholar 

  16. F. Barbier A. Rusanov (2001) Journal of Nuclear Materials 296 231 Occurrence Handle1:CAS:528:DC%2BD3MXkvVWlsLw%3D

    CAS  Google Scholar 

  17. J. Zhang N. Li Y. Chen A. Rusanov (2005) Journal of Nuclear Materials 336 1 Occurrence Handle1:CAS:528:DC%2BD2cXhtVOiurvF

    CAS  Google Scholar 

  18. Zhang J., Li N., Report to Los Alamos National Laboratory 2004: LA-UR-04-0869.

  19. C. Wagner (1969) Corrosion Science 9 91 Occurrence Handle1:CAS:528:DyaF1MXktVKiurY%3D

    CAS  Google Scholar 

  20. C. S. Tedmon SuffixJr (1966) Journal of Electrochemical Society 113 766 Occurrence Handle1:CAS:528:DyaF28XksVGlsrw%3D

    CAS  Google Scholar 

  21. B. Stellwag (1998) Corrosion Science 40 337 Occurrence Handle1:CAS:528:DyaK1cXktVaisLg%3D

    CAS  Google Scholar 

  22. J. E. Castle H. G. Masterson (1966) Corrosion Science 6 93 Occurrence Handle1:CAS:528:DyaF28XkslWlur8%3D

    CAS  Google Scholar 

  23. R. Winkler F. Huttner F. Michel (1989) VGB Kraftwerkstechnik 69 527 Occurrence Handle1:CAS:528:DyaL1MXkvVGmtLo%3D

    CAS  Google Scholar 

  24. D. H. Lister R. D. Davidson E. McAlpine (1987) Corrosion Science 27 113 Occurrence Handle1:CAS:528:DyaL2sXhsVGqtLo%3D

    CAS  Google Scholar 

  25. J. Robertson (1989) Corrosion Science 29 1275 Occurrence Handle1:CAS:528:DyaK3cXmsFersg%3D%3D

    CAS  Google Scholar 

  26. A. Atkinson (1985) Reviews of Modern Physics 57 IssueID2 437 Occurrence Handle1:CAS:528:DyaL2MXktFCltbk%3D

    CAS  Google Scholar 

  27. G. B. Gibbs (1973) Oxidation of Metals 7 173 Occurrence Handle1:CAS:528:DyaE2cXos1ahsg%3D%3D

    CAS  Google Scholar 

  28. R. J. Hussey M. J. Graham (1981) Corrosion Science 21 255 Occurrence Handle1:CAS:528:DyaL3MXks1KjsLo%3D

    CAS  Google Scholar 

  29. J. Robertson (1991) Corrosion Science 32 443 Occurrence Handle1:CAS:528:DyaK3MXltl2qsbo%3D

    CAS  Google Scholar 

  30. Balbaud-Celerier F., Terlain A., Fauvet P., Richet C., (2003).“Corrosion of Steels in Liquid Lead Alloys Protected by an Oxide layer Application to the MEGAPIE target and to the Russian Reactor Concept BREST 300”, Report Technique RT-SCCME 630: CEA Report.

  31. A. Atkinson (1982) Corrosion Science 22 87 Occurrence Handle1:CAS:528:DyaL38XitVensbY%3D

    CAS  Google Scholar 

  32. C. Wagner (1969) Corrosion Science 8 889

    Google Scholar 

  33. C. Wagner (1976) Progress in Solid State Chemistry 10 3

    Google Scholar 

  34. F. Gesmundo (1987) Materials Science and Engineering 87 243 Occurrence Handle1:CAS:528:DyaL2sXitFOrtbk%3D

    CAS  Google Scholar 

  35. N. J. Cory T. M. Herrington (1987) Oxidation of Metals 28 237 Occurrence Handle1:CAS:528:DyaL1cXpvVOmtQ%3D%3D

    CAS  Google Scholar 

  36. W. W. Smeltzer R. R. Haering J. S. Kirkaldy (1961) ACTA Metallurgica 9 880 Occurrence Handle1:CAS:528:DyaF38Xnt1Cltw%3D%3D

    CAS  Google Scholar 

  37. A. Atkinson R. I. Taylor A. E. Hughes (1982) Philosophical Magazine A 45 823

    Google Scholar 

  38. R. Dieckmann H. Schmalzried (1977) Berichte der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 81 344 Occurrence Handle1:CAS:528:DyaE2sXhslOmt7s%3D

    CAS  Google Scholar 

  39. R. Dieckmann H. Schmalzried (1977) Berichte der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 81 414 Occurrence Handle1:CAS:528:DyaE2sXhvFyit70%3D

    CAS  Google Scholar 

  40. R. Dieckmann H. Schmalzried (1978) Berichte der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 82 778 Occurrence Handle1:CAS:528:DyaE1cXlsFejurg%3D

    CAS  Google Scholar 

  41. N. L. Peterson W. K. Chen D. Wolf (1980) J. Phys. Chem. Solids. 41 709 Occurrence Handle1:CAS:528:DyaL3cXmtFSnsrk%3D

    CAS  Google Scholar 

  42. Kofstad P., High Temperature Corrosion, (Elsevier Applied Science Publishers Ltd. 1987) p. 44.

  43. J. Topfer S. Aggarwal R. Dieckmann (1995) Solid State Ionics 81 251

    Google Scholar 

  44. A. Atkinson M. L. Odwyer T. I. Taylor (1983) Journal of Materials Science 18 2371 Occurrence Handle1:CAS:528:DyaL3sXkvFWqur8%3D

    CAS  Google Scholar 

  45. J. Zhang N. Li (2003) Nuclear Technology 144 379 Occurrence Handle1:CAS:528:DC%2BD3sXptFWltLc%3D

    CAS  Google Scholar 

  46. J. Zhang N. Li (2003) Journal of Nuclear Materials 321 184 Occurrence Handle1:CAS:528:DC%2BD3sXmvVaksr8%3D

    CAS  Google Scholar 

  47. F. Balbaud-Celerier F. Barbier (2001) Journal of Nuclear Materials 289 227 Occurrence Handle1:CAS:528:DC%2BD3MXisFCnsrk%3D

    CAS  Google Scholar 

  48. Zhang J., Li N., Journal of Nuclear Materials (in press 2005).

  49. H. Schmalzried (1962) Zeitschrift fur Physikalische Chemie Neue Folg 31 184 Occurrence Handle1:CAS:528:DyaF38XktVyis7o%3D

    CAS  Google Scholar 

  50. P. Surman (1973) Corrosion Science 13 825 Occurrence Handle1:CAS:528:DyaE2cXhtFWnt7w%3D

    CAS  Google Scholar 

  51. A. F. Smith (1982) Corrosion Science 22 857 Occurrence Handle1:CAS:528:DyaL38Xmt1Sksb8%3D

    CAS  Google Scholar 

  52. M. Saito H. Furuya M. Sugisaki (1985) Journal of Nuclear Materials 135 11 Occurrence Handle1:CAS:528:DyaL2MXlvVGnsrg%3D

    CAS  Google Scholar 

  53. A. F. Smith (1981) Corrosion Science 21 529

    Google Scholar 

  54. H. Furuya M. Satito M. Sugisaki (1988) Journal of Nuclear Materials 154 128 Occurrence Handle1:CAS:528:DyaL1cXkvVWltLY%3D

    CAS  Google Scholar 

  55. S. L. Chang F. S. Pettit N. Birks (1990) Oxidation of Metals 34 71 Occurrence Handle1:CAS:528:DyaK3cXlsFKru7w%3D

    CAS  Google Scholar 

  56. D. M. Rishel F. S. Pettit N. Birks (1991) Materials Science and Engineering A 143 197

    Google Scholar 

  57. H. Taimatsu (1999) Journal of the Electrochemical Society 146 3686 Occurrence Handle1:CAS:528:DyaK1MXmvVOmt74%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Li, N. Oxidation Mechanism of Steels in Liquid–Lead Alloys. Oxid Met 63, 353–381 (2005). https://doi.org/10.1007/s11085-005-4392-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-005-4392-3

Keywords

Navigation