Skip to main content
Log in

Corrosion of 9Cr Steel in CO2 at Intermediate Temperature I: Mechanism of Void-Induced Duplex Oxide Formation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Under CO2 exposure at an intermediate temperature, typically 550 °C, 9Cr–1Mo steel forms a duplex oxide scale made of an outer magnetite layer and an almost-as-thick inner Fe–Cr rich spinel oxide layer. It is proposed that the inner Fe–Cr spinel layer grows according to a mechanism involving void formation at the oxide/metal interface. The driving force for pore formation is the outward magnetite growth: iron vacancies are injected at the oxide/metal interface then condense into voids. The fresh metallic surface made available is then oxidized by CO2, which diffuses fast through the scale. The physical aspects, the integrity and the nature of the scale are shown to be very dependent on the oxygen potential existing in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Notes

  1. MAGNesium OXide.

  2. Advanced Gas-cooled Reactor.

  3. Volume per million.

  4. au: arbitrary unit.

References

  1. A. Moisseytsev and J. Sienicki, in Supercritical CO 2 Power Cycle Symposium (Troy, NY, 2009).

  2. Y. Kato, T. Nitawaki, and Y. Muto, Nuclear Engineering and Design 230, 195 (2004).

    Article  CAS  Google Scholar 

  3. L. N. Hierro, V. Rohr, P. J. Ennis, M. Schütze, and W. J. Quadakkers, Materials and Corrosion 56, 890 (2005).

    Article  CAS  Google Scholar 

  4. D. R. Holmes, R. B. Hill, and L. M. Wyatt (eds.), Corrosion of Steels in CO 2 , (British Nuclear Energy Society, Reading University, Reading, 1974).

    Google Scholar 

  5. T. Furukawa, Y. Inagaki, and M. Aritomi, in ICONE 17 (Brussels, 2009).

  6. G. Cao, M. Anderson, K. Shridharan, L. Tan, and T. Allen, in Supercritical CO 2 Power Cycle Symposium (Troy, NY, 2009).

  7. M. Dunlevy, G. Eastwick, J. Gibbs, J. Lim, T. J. McKrell, and R. G. Ballinger, in Supercritical CO 2 Power Cycle Symposium (Troy, NY, 2009).

  8. G. B. Gibbs, R. E. Pendlebury, and M. R. Wooton, in Corrosion of Steels in CO 2 (Reading University, Reading, 1974).

  9. M. G. C. Cox, V. D. Scott, and B. McEnaney, Nature-Physical Science 237, 140 (1972).

    CAS  Google Scholar 

  10. M. G. C. Cox, B. McEnaney, and V. D. Scott, Philosophical Magazine 28, 309 (1973).

    Article  CAS  Google Scholar 

  11. A. M. Pritchard and A. E. Truswell, in Corrosion of Steel in CO 2 (British Nuclear Energy Society, Reading University, Reading, 1974).

  12. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant, and G. Picard, Corrosion Science 50, 2523 (2008).

    Article  CAS  Google Scholar 

  13. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard, and G. Santarini, Corrosion Science 50, 2537 (2008).

    Article  CAS  Google Scholar 

  14. L. Martinelli, F. Balbaud-Célérier, G. Picard, and G. Santarini, Corrosion Science 50, 2549 (2008).

    Article  CAS  Google Scholar 

  15. F. Rouillard, G. Moine, M. Tabarant, and J. C. Ruiz, Oxidation of Metals (2011). doi:10.1007/s11085-011-9272-4.

  16. F. Rouillard and L. Martinelli, Oxidation of Metals (2011). doi:10.1007/s11085-011-9273-3.

  17. N. Bertrand, C. Desgranges, D. Poquillon, M. C. Laffont, and D. Monceau, Oxidation of Metals 73, 139 (2010).

    Article  CAS  Google Scholar 

  18. M. R. Taylor, J. M. Calvert, D. G. Lees, and D. B. Meadowcroft, Oxidation of Metals 14, 497 (1980).

    Article  Google Scholar 

  19. M. G. C. Cox, V. D. Scott, and B. McEnaney, Philosophical Magazine 26, 839 (1972).

    Article  CAS  Google Scholar 

  20. L. Tomlinson and N. J. Cory, Corrosion Science 29, 939 (1989).

    Article  CAS  Google Scholar 

  21. P. Kofstad, Oxidation of Metals 24, 265 (1985).

    Article  CAS  Google Scholar 

  22. J. Robertson and M. I. Manning, Materials Science and Technology 4, 1064 (1988).

    CAS  Google Scholar 

  23. G. B. Gibbs, Oxidation of Metals 7, 265 (1973).

    Google Scholar 

  24. R. J. Hussey and M. J. Graham, Corrosion Science 21, 255 (1981).

    Article  CAS  Google Scholar 

  25. A. Atkinson and D. W. Smart, Journal of the Electrochemical Society 135, 2886 (1988).

    Article  CAS  Google Scholar 

  26. W. Przybilla and M. Schütze, Oxidation of Metals 58, 337 (2002).

    Google Scholar 

  27. A. G. Evans, D. Rajdev, and D. L. Douglass, Oxidation of Metals 4, 151 (1972).

    Article  CAS  Google Scholar 

  28. W. Przybilla and M. Schutze, Oxidation of Metals 58, 103 (2002).

    Article  CAS  Google Scholar 

  29. G. B. Gibbs and R. Hales, Corrosion Science 17, 487 (1977).

    Article  CAS  Google Scholar 

  30. G. B. Gibbs, Oxidation of Metals 16, 147 (1981).

    Article  CAS  Google Scholar 

  31. S. Mrowec, Corrosion Science 7, 563 (1967).

    Article  CAS  Google Scholar 

  32. P. L. Surman and A. M. Brown, in Corrosion of Steels in CO 2 (Reading University, Reading, 1974).

  33. M. Robbins, G. K. Wertheim, R. C. Sherwood, and D. N. E. Buchanan, Journal of Physics and Chemistry on Solids 32, 717 (1971).

    Article  CAS  Google Scholar 

  34. W. D. Derbyshire and H. J. Yearian, Physical Review 112, 1603 (1958).

    Article  CAS  Google Scholar 

  35. J. P. Hirth, B. Pieraggi, and R. A. Rapp, Acta Metallurgica et Materialia 43, 1065 (1995).

    Article  CAS  Google Scholar 

  36. B. Pieraggi and R. A. Rapp, Acta Metallurgica 36, 1281 (1988).

    Article  CAS  Google Scholar 

  37. D. Caplan, R. J. Hussey, G. I. Sproule, and M. J. Graham, Oxidation of Metals 14, 279 (1980).

    Article  CAS  Google Scholar 

  38. P. I. Williams, R. G. Faulkner, L. W. Pinder, and D. J. Lees, Corrosion Science 27, 595 (1987).

    Article  CAS  Google Scholar 

  39. J. Zurek, M. Michalik, F. Schmitz, T. U. Kern, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals 63, 401 (2005).

    Article  CAS  Google Scholar 

  40. T. Maruyama, M. Ueda, and K. Kawamura, Defect and Diffusion Forum 289–292, 1 (2009).

    Article  Google Scholar 

  41. H. E. Evans, Materials at High Temperature 22, 155 (2005).

    Article  CAS  Google Scholar 

  42. J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser, and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).

    Article  CAS  Google Scholar 

  43. G. M. Raynaud and R. A. Rapp, Oxidation of Metals 21, 89 (1984).

    Article  CAS  Google Scholar 

  44. X. G. Zheng and D. J. Young, Oxidation of Metals 42, 163 (1994).

    Article  CAS  Google Scholar 

  45. HSC Chemistry 5.11 (Outokumpu Research Oy, Pori, Finland, 2002).

  46. M. Backhaus-Ricoult and R. Dieckmann, Berichte der Bunsengesellschaft für Physikalische Chemie 90, 690 (1986).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank A. Abdelouahab for having carrying out part of the corrosion tests and FESEM observations, the society SERMA for having performed observations and analyses by FIB-TEM, Mr M. Tabarant (CEA/DEN/DANS/DPC/SCP/LRSI) for the GDOES analyses, D. Neff (CEA/DSM/IRAMIS/SIS2M) for providing the Raman microscope and S. Poissonnet (CEA/DEN/DANS/DMN/SRMP) for performing the WDS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rouillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouillard, F., Moine, G., Martinelli, L. et al. Corrosion of 9Cr Steel in CO2 at Intermediate Temperature I: Mechanism of Void-Induced Duplex Oxide Formation. Oxid Met 77, 27–55 (2012). https://doi.org/10.1007/s11085-011-9271-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-011-9271-5

Keywords

Navigation