Skip to main content
Log in

Corrosion of 9Cr Steel in CO2 at Intermediate Temperature III: Modelling and Simulation of Void-induced Duplex Oxide Growth

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

9Cr–1Mo steel forms in CO2 at 550 °C a duplex oxide layer containing an outer magnetite scale and an inner Fe–Cr rich spinel scale. The inner spinel oxide layer is formed according to a void-induced oxidation mechanism. The kinetics of the total oxide growth is simulated from the proposed oxidation model. It is found that the rate limiting step of the total oxide growth is iron diffusion through high diffusion paths such as oxide grain boundaries in the inner Fe–Cr rich spinel oxide layer. In the proposed oxidation model, a network of nanometric high diffusion paths through the oxide layer allows the very fast supply of CO2 inside pores formed at the oxide/metal interface. Its existence is demonstrated to be physically realistic and allows explaining several observed physical features evolving in the oxide layer with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Oxidation of Metals (2011). doi:10.1007/s11085-011-9271-5.

  2. P. C. Rowlands, J. C. P. Garett, F. G. Hicks, S. K. Lister, B. Lloyd and J. A. Twelves, in BNES International Conference on Corrosion of Steels in CO 2 (Reading University, 1974).

  3. P. L. Harrison, R. B. Dooley, S. K. Lister, D. B. Meadowcroft, P. J. Nolan, R. E. Pendlebury, P. L. Surman and M. R. Wooton, in BNES International Conference on Corrosion of Steels in CO 2 (Reading University, 1974).

  4. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant and G. Picard, Corrosion Science 50, 2523 (2008).

    Article  CAS  Google Scholar 

  5. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard and G. Santarini, Corrosion Science 50, 2537 (2008).

    Article  CAS  Google Scholar 

  6. L. Martinelli, F. Balbaud-Célérier, G. Picard and G. Santarini, Corrosion Science 50, 2549 (2008).

    Article  CAS  Google Scholar 

  7. L. Martinelli and F. Balbaud-Célérier, Materials and Corrosion 62, 531 (2011).

    Article  CAS  Google Scholar 

  8. M. Backhaus-Ricoult and R. Dieckmann, Ber Bunsenges Phys Chem 90, 690 (1986).

    CAS  Google Scholar 

  9. J. Töpfer, S. Aggarwal and R. Dieckmann, Solid State Ionics 81, 251 (1995).

    Article  Google Scholar 

  10. A. Atkinson, M. L. O’Dwyer and R. I. Taylor, Journal of Materials Science 18, 2371 (1983).

    Article  CAS  Google Scholar 

  11. S. Tinkler and R. Dieckmann, Journal of Materials Science 27, 3799 (1992).

    Article  CAS  Google Scholar 

  12. A. Atkinson, M. L. Odwyer and R. I. Taylor, Journal of Materials Science 18, 2371 (1983).

    Article  CAS  Google Scholar 

  13. A. Atkinson, Reviews of Modern Physics 57, 437 (1985).

    Article  CAS  Google Scholar 

  14. T. Maruyama, M. Ueda and K. Kawamura, Defect and Diffusion Forum 289–292, 1 (2009).

    Article  Google Scholar 

  15. P. L. Surman and A. M. Brown, in Corrosion of Steels in CO 2 (Reading University, 1974).

  16. E. W. Hart, Acta Metallurgica 5, 597 (1957).

    Article  CAS  Google Scholar 

  17. Y. Mishin, C. Herzig, J. Bernardini and W. Gust, International Materials Reviews 42, 155 (1997).

    CAS  Google Scholar 

  18. M. G. C. Cox, V. D. Scott and B. McEnaney, Philosophical Magazine 26, 839 (1972).

    Google Scholar 

  19. F. Rouillard, G. Moine, M. Tabarant and J. C. Ruiz, Oxidation of Metals (2011). doi:10.1007/s11085-011-9272-4.

  20. R. J. Hussey and M. J. Graham, Corrosion Science 21, 255 (1981).

    Article  CAS  Google Scholar 

  21. H. Kyung and C. K. Kim, Materials Science and Engineering B 76, 173 (2000).

    Article  Google Scholar 

  22. A. Atkinson and D. W. Smart, Journal of the Electrochemical Society 135, 2886 (1988).

    Article  CAS  Google Scholar 

  23. J. Robertson and M. I. Manning, Materials Science and Technology 4, 1064 (1988).

    CAS  Google Scholar 

  24. G. B. Gibbs, R. E. Pendlebury and M. R. Wooton, in Corrosion of Steels in CO 2 (Reading University, 1974).

Download references

Acknowledgments

The authors are thankful to Mme G. Moine and Mr. A. Abdelouahab for having carried out the corrosion tests and the FESEM pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rouillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouillard, F., Martinelli, L. Corrosion of 9Cr Steel in CO2 at Intermediate Temperature III: Modelling and Simulation of Void-induced Duplex Oxide Growth. Oxid Met 77, 71–83 (2012). https://doi.org/10.1007/s11085-011-9273-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-011-9273-3

Keywords

Navigation