Skip to main content
Log in

Sulphidation Behavior of a Non Harmful Water-Based Al and Al–Si Slurry Coating on CM247 Superalloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Slurry aluminide coatings are widely applied to protect metallic surfaces from oxidation and corrosion. They are frequently used in gas turbine engine nozzles because of economical advantages and a straight-forward manufacturing route. A variety of commercial slurries are available to aluminize the surfaces of nickel-based superalloys, however, they have two main disadvantages. First, the phosphates and chromates or halides used as binders and to activate the diffusion species are environmentally harmful; second, the conventional systems have to be heat-treated in an inert atmosphere. As an outcome of the PARTICOAT project the variety of slurry derived coatings has been extended by tailoring the particle size of the metallic source. By doing that, environmentally friendly water-based slurries were developed to produce in a one-step process und atmospheric conditions, a thermal barrier system based on an aluminum diffusion layer and an alumina foam layer which serves as bond coat as well as top coat (TC). CM 247 nickel base superalloy was coated and heat-treated in air using newly developed Al and Al–Si slurries. The oxidation behavior was investigated at 1,000 °C and then compared to pack-cemented aluminide coatings. The sulphidation behavior was investigated at 1,000 °C in an atmosphere of 1.5 vol% SO2 in synthetic air for Al and Al–Si slurry coated samples with and without the alumina foam TC layer. PARTICOAT Al-based slurries,, after the initial stabilization of the TC, showed similar oxidation kinetics as pack cemented aluminides when exposed to air. When the coatings were exposed to sulphide-containing atmospheres, their oxidation rates increased, producing typical type I corrosion damage. Coatings without TC produced more protective oxide scales. The weight gain and coating area affected by corrosion were slightly lower for the Al-based slurries after 1,000 h of exposure than for the Al–Si based ones. The new coating presented here offers unique advantages in comparison to state-of-the-art slurry and pack cemented coatings by opening a potential way to manufacture a complete thermal barrier coating system by a simple, inexpensive and environmentally safe deposition and heat-treatment in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. W. Goward, in Proceedings of the Symposium on Properties of High-Temperature Alloys with Emphasis on Environmental Effects (Wiley, New York, 1976).

  2. N. R. Lindblad, Oxidation of Metals 1, 143 (1969).

    Article  CAS  Google Scholar 

  3. J. L. Smialek, and C. E. Lowell, Journal of the Electrochemical Society 121, 800 (1974).

    Article  CAS  Google Scholar 

  4. B. M. Warnes, and D. C. Punola, Surface and Coatings Technology 94–95, 1 (1997).

    Article  Google Scholar 

  5. S. C. Deevi, V. K. Sikka, and C. T. Liu, Progress in Materials Science 42, 177 (1997).

    Article  CAS  Google Scholar 

  6. Y. Wang, and W. Chen, Surface and Coatings Technology 183, 18 (2004).

    Article  CAS  Google Scholar 

  7. N. Birks, G. H. Meier, and F. S. Pettit, in Introduction to the High-Temperature Oxidation of Metals, 2nd ed., Chap. 8 (Cambridge University Press, Cambridge, 2006), p. 205.

  8. N. S. Bornstein, and M. A. DeCrescente, Transactions of the Metallurgical Society of AIME 245, 1947 (1969).

    CAS  Google Scholar 

  9. E. Celik, I. Ozdemir, E. Avci, and Y. Tsunekawa, Surface and Coatings Technology 193, 297 (2005).

    Article  CAS  Google Scholar 

  10. T. Sugama, Surface and Coatings Technology 106, 106 (1998).

    Article  CAS  Google Scholar 

  11. M. G. Hocking, V. Vasantasree, and P. S. Sidky, in Metallic & Ceramic Coatings: Production, High Temperature Properties & Applications, Chap. 2 (John Wiley & Sons; Longman Scientific & Technical, Essex, 1989), p. 11.

  12. Y. N. Wu, A. Yamaguchi, H. Murakami, and S. Kuroda, Materials Transactions 47, 1918 (2006).

    Article  CAS  Google Scholar 

  13. W. F. Gale, and J. E. King, Metallurgical Transactions A 23, 2657 (1992).

    Article  Google Scholar 

  14. C. Rosado, and M. Schütze, Materials and Corrosion 54, 831 (2003).

    Article  CAS  Google Scholar 

  15. www.indestructible.co.uk.

  16. www.sermatech.com.

  17. M. C. Galetz, X. Montero, M. Mollard, M. Günthner, F. Pedraza, and M. Schütze, Intermetallics, (2012).

  18. V. Kolarik, M. Anchustegui Mezquita, M. del Mar Juez-Lorenzo, H. Fietzek, P. Kodjamanova, M. Schütze, and T. Weber, Ch.WO 2008/110161 A1 (2008).

  19. A. J. Rasmussen, A. Agüero, M. Gutierrez, and M. J. L. Östergaard, Surface and Coatings Technology 202, 1479 (2008).

    Article  CAS  Google Scholar 

  20. T. A. Kircher, B. G. McMordie, and A. McCarter, Surface and Coatings Technology 68/69, 32 (1994).

    Article  CAS  Google Scholar 

  21. M. C. Galetz, X. Montero, and H. Murakami, Materials and Corrosion 63, 921 (2012).

    Google Scholar 

  22. X. Montero, M. Galetz, and M. Schütze, Surface and Coatings Technology 206, 1586 (2011).

    Article  CAS  Google Scholar 

  23. Z. B. Bao, Q. M. Wang, W. Z. Li, X. Liu, J. Gong, T. Y. Xiong, and C. Sun, Corrosion Science 51, 860 (2009).

    Article  CAS  Google Scholar 

  24. A. Firouzi, and K. Shirvani, Corrosion Science 52, 3579 (2010).

    Article  CAS  Google Scholar 

  25. R. E. Fryxell, and G. E. Leese, Surface and Coatings Technology 32, 97 (1987).

    Article  CAS  Google Scholar 

  26. B. Gleeson, W. H. Cheung, W. Da Costa, and D. J. Young, Oxidation of Metals 38, 407 (1992).

    Article  CAS  Google Scholar 

  27. R. E. Malush, P. Deb, and D. H. Boone, Surface and Coatings Technology 36, 13 (2009).

    Article  Google Scholar 

  28. G. Navas, and L. Viloria, Surface and Coatings Technology 94–95, 161 (1997).

    Article  Google Scholar 

  29. K. Shirvani, M. Saremi, A. Nishikata, and K. Tsutsumi, Corrosion Science 45, 1011 (2003).

    Article  CAS  Google Scholar 

  30. R. Streiff, O. Cerclier, and D. H. Boone, Surface and Coatings Technology 32, 111 (1987).

    Article  CAS  Google Scholar 

  31. J. Summer, A. Encinas-Oropesa, N. J. Simms, and J. R. Nicholls, in 8th International Symposium on High-Temperature Corrosion and Protection of Materials, Les Embiez, 20–25 May 2012.

  32. J. Summer, A. Encinas-Oropesa, N. J. Simms, and J. E. Oakey, Materials at High Temperatures 28, 369 (2012).

    Article  Google Scholar 

  33. M. W. Brumm, and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  CAS  Google Scholar 

  34. J. K. Doychak, T. E. Mitchell, and J. L. Smialek, Materials Research Society Symposium Proceedings 39, 475 (1985).

    Article  CAS  Google Scholar 

  35. D. R. Mumm, A. G. Evans, and I. T. Spitsberg, Acta Materialia 49, 2329 (2001).

    Article  CAS  Google Scholar 

  36. S. Hasani, M. Panjepour, and M. Shamanian, Oxidation of Metals 78, 179 (2012).

    Google Scholar 

  37. J. L. Meijering, Advances in Materials Research, (Wiley Interscience, New York, 1971).

    Google Scholar 

  38. J. Shi, S. Darzens, and A. M. Karlsson, Materials Science and Engineering: A 392, 301 (2005).

    Article  Google Scholar 

  39. I. T. Spitsberg, D. R. Mumm, and D. Evans, Materials Science and Engineering: A 394, 176 (2005).

    Article  Google Scholar 

  40. V. K. Tolpygo, and D. R. Clarke, Acta Materialia 48, 3283 (2000).

    Article  CAS  Google Scholar 

  41. V. K. Tolpygo, and D. R. Clarke, Surface and Coatings Technology 163–164, 81 (2003).

    Article  Google Scholar 

  42. V. K. Tolpygo, and D. R. Clarke, Surface and Coatings Technology 200, 1276 (2005).

    Article  CAS  Google Scholar 

  43. A. Bradshaw, N. J. Simms, and J. R. Nicholls, Surface and Coatings Technology 216, 8 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank D. Hasenpflug, S. Gansler and E. Berghof-Hasselbächer for helping with the metallographic preparation and G. Schmidt and M. Braun for the EPMA analysis. This work is supported by the European 7th Framework Program (project CP-IP 211329-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Montero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montero, X., Galetz, M.C. & Schütze, M. Sulphidation Behavior of a Non Harmful Water-Based Al and Al–Si Slurry Coating on CM247 Superalloy. Oxid Met 80, 635–649 (2013). https://doi.org/10.1007/s11085-013-9412-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9412-0

Keywords

Navigation