Skip to main content
Log in

The Influence of Cr Evaporation on Long Term Cr Depletion Rates in Ferritic Stainless Steels

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

It is shown that well defined flow rates are an essential parameter in oxidation experiments influenced by scale volatilisation. The 22 % Cr ferritic steel Sanergy HT, intended for use as an SOFC interconnect material, was exposed discontinuously over 3100 h at 850 °C in air + 3 % H2O @ 6000 sml min−1 (27 cm s−1) and stagnant conditions in a tubular reactor. Time resolved isothermal Cr evaporation measurements over 1000 h were also performed in the 6000 sml min−1 case while the stagnant exposure environment was saturated in Cr(VI) species to suppress any evaporation reactions. Mass balances based on oxidation and evaporation data were in good agreement with SEM/EDX bulk Cr concentration measurements. The time to a bulk concentration of 15 wt% Cr increased by ≈2× from ≈3000 to ≈5500 h when evaporation was suppressed. Further, it was established that a suppressed evaporation reaction affected not just the magnitude of Cr depletion in the steel but even its long term depletion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

x:

Oxide thickness (cm)

k′:

Scaling constant (cm−2 s−1)

\(k_{v}\) :

Volatilisation constant (cm s−1)

t:

Time (s)

γ:

Stoichiometric factor equal to 3.167

∆m:

Gravimetrically determined mass gain (mg cm−2)

∆mevap(t):

Oxide loss due to evaporation (mg cm−2)

∆mgross(t):

Evaporation corrected mass gain (mg cm−2)

∆mnet(t):

Gravimetrically determined component of evaporation corrected mass gain (mg cm−2)

ϱoxide :

Oxide density (mg cm−3)

mCr,oxide(t):

Mass of Cr in the oxide at time t (mg cm−2)

mCr,0 :

Mass of Cr initially available in the steel (mg cm−2)

mCr,evap(t):

Mass of Cr lost due to evaporation (mg cm−2)

mCr(t):

Cr remaining in the steel at time t (mg cm−2)

\({\text{E}}_{\text{i}}^{\text{Cr}}\) :

Average evaporation rate of Cr over the ith measurement interval (mg cm−2h−1)

∆ti :

Duration over which \({\text{E}}_{\text{i}}^{\text{Cr}}\) is applicable (h)

References

  1. P. Santacreu, S. Saedlou, L. Faivre, A. Acher, J. Leseux. Ferritic stainless steel grade with improved durability for high temperature exhaust manifold. SAE Technical Papers (2011).

  2. C. Key, J. Eziashi, J. Froitzheim, R. Amendola, R. Smith and P. Gannon, J Electrochem Soc. 161, C373 (2014).

    Article  Google Scholar 

  3. W. N. Liu, X. Sun, E. Stephens and M. Khaleel, Corros Sci 53, 2406 (2011).

    Article  Google Scholar 

  4. J. Xiao, W. Zhang, C. Xiong, B. Chi, J. Pu and L. Jian, Int J Hydrog Energy 40, 1868 (2015).

    Article  Google Scholar 

  5. J. W. Stevenson, Z. G. Yang, G. G. Xia, Z. Nie and J. D. Templeton, J Power Sour 231, 256 (2013).

    Article  Google Scholar 

  6. N. S. Waluyo, B. K. Park, S. B. Lee, T. H. Lim, S. J. Park, R. H. Song, et al., J Solid State Electrochem 18, 445 (2014).

    Article  Google Scholar 

  7. E. Essuman, G. H. Meier, J. Żurek, M. Hänsel and W. J. Quadakkers, Oxid Met 69, 143 (2008).

    Article  Google Scholar 

  8. S. R. J. Saunders, M. Monteiro and F. Rizzo, Prog Mater Sci 53, 775 (2008).

    Article  Google Scholar 

  9. A. Donchev, H. Fietzek, V. Kolarik, D. Renusch and M. Schütze, Mater High Temp. 22, 139 (2005).

    Article  Google Scholar 

  10. A. Galerie, Y. Wouters and M. Caillet, Mater Sci Forum 369–372, 231 (2001).

    Article  Google Scholar 

  11. H. Asteman, K. Segerdahl, J. E. Svensson, L. G. Johansson, in High Temperature Corrosion and Protection of Materials 5, eds. R. Streiff, I. G. Wright, R. C. Krutenat, M. Caillet, A. Galerie, Pts 1 and 2 (Trans Tech Publications, Dürnten, 2001), p. 277.

  12. B. B. Ebbinghaus, Combust Flame 93, 119 (1993).

    Article  Google Scholar 

  13. E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky, et al., J Phys Chem A 111, 1971 (2007).

    Article  Google Scholar 

  14. C. Wagner, J Electrochem Soc. 99, 369 (1952).

    Article  Google Scholar 

  15. N. Birks, G. Meier and F. Petit, High Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2009).

    Google Scholar 

  16. C. S. Tedmon, J Electrochem Soc. 113, 766 (1966).

    Article  Google Scholar 

  17. P. Huczkowski, V. Shemet, J. Piron-Abellan, L. Singheiser, W. J. Quadakkers and N. Christiansen, Mater Corros 55, 825 (2004).

    Article  Google Scholar 

  18. A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J. P. Petit and L. Antoni, Mater High Temp 22, 105 (2005).

    Article  Google Scholar 

  19. J. Froitzheim, H. Ravash, E. Larsson, L. G. Johansson and J. E. Svensson, J Electrochem Soc. 157, B1295 (2010).

    Article  Google Scholar 

  20. S. Canovic, J. Froitzheim, R. Sachitanand, M. Nikumaa, M. Halvarsson, L. G. Johansson, et al., Surf Coat Technol 215, 62 (2013).

    Article  Google Scholar 

  21. R. Sachitanand, M. Sattari, J.-E. Svensson and J. Froitzheim, Int J Hydrog Energy 38, 15328 (2013).

    Article  Google Scholar 

  22. H. E. Evans, Mater Sci Technol 4, 1089 (1988).

    Article  Google Scholar 

  23. C. Desgranges, F. Lequien, E. Aublant, M. Nastar and D. Monceau, Oxid Met 79, 93 (2013).

    Article  Google Scholar 

  24. J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser, et al., J Power Sour 178, 163 (2008).

    Article  Google Scholar 

  25. H. Falk-Windisch, J. E. Svensson and J. Froitzheim, J Power Sour 287, 25 (2015).

    Article  Google Scholar 

  26. B. Pujilaksono, T. Jonsson, M. Halvarsson, I. Panas, J.-E. Svensson and L.-G. Johansson, Oxid Met 70, 163 (2008).

    Article  Google Scholar 

  27. H. Al-Badairy, G. J. Tatlock and M. J. Bennett, Mater High Temp. 17, 101 (2000).

    Article  Google Scholar 

  28. D. P. Whittle, Corros Sci 12, 869 (1972).

    Article  Google Scholar 

  29. P. Huszkowski, S. Ertl, J. Piron-Abellan, N. Christiansen, T. Höfler, V. Shemet, et al., Mater High Temp. 22, 253 (2005).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank AB Sandvik Materials Technology for providing the materials. The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under Grant Agreement No. [278257].

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sachitanand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachitanand, R., Svensson, JE. & Froitzheim, J. The Influence of Cr Evaporation on Long Term Cr Depletion Rates in Ferritic Stainless Steels. Oxid Met 84, 241–257 (2015). https://doi.org/10.1007/s11085-015-9552-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9552-5

Keywords

Navigation