Skip to main content
Log in

Effects of Alkaline Ferrocyanide on Non-faradaic Yields of Anodic Contact Glow Discharge Electrolysis: Determination of the Primary Yield of OH· Radicals

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Non faradaic yields of anodic contact glow discharge electrolysis (CGDE) originate through H· and OH· radical generated during the process. Scavenging effects of Fe(CN) 4−6 on OH· radicals, in alkaline media have been investigated. A kinetic analysis of the competing reactions of O with different species in the system leads to an yield of 9.8 mol mol electron−1 of OH· and H· radicals each in the liquid phase reaction zone of anodic CGDE in good agreement with the yield reported from a study involving H· radical scavengers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hickling A (1971) In: Bockris JOM, Conway BE (eds) Modern aspects of electrochemistry, vol 6. Butterworths, London, p 329

    Google Scholar 

  2. Sen Gupta SK, Singh OP (1991) J Electroanal Chem 301:189

    Google Scholar 

  3. Sen Gupta SK, Srivastava AK, Singh R (1997) J Electroanal Chem 427:23

    Google Scholar 

  4. Gangal U, Srivastava M, Sen Gupta SK (2009) J Electrochem Soc 156:F131

    Google Scholar 

  5. Sen Gupta SK, Palit SR (1975) J Indian Chem Soc 52:91

    Google Scholar 

  6. Sen Gupta SK, Palit SR (1976) J Indian Chem Soc 53:472

    Google Scholar 

  7. Sen Gupta SK, Singh OP (1994) J Electroanal Chem 369:113

    Google Scholar 

  8. Sen Gupta SK, Singh R, Srivastava AK (1998) J Electrochem Soc 145:2209

    Google Scholar 

  9. Bullock AT, Gavin DL, Ingram MD (1980) J Chem Soc, Faraday Trans 1(76):648

    Google Scholar 

  10. Hase H, Harada K (2001) Viva Orig 29:61

    Google Scholar 

  11. Hickling A, Newns GK (1961) J Chem Soc 5186

  12. Sen Gupta SK, Singh R, Srivastava AK (1995) Indian J Chem 34A:459

    Google Scholar 

  13. Sen Gupta SK, Sandhir U, Misra N (2001) J Polym Sci A Polym Chem 39:1584

    Google Scholar 

  14. Gao J, Wang A, Li Y, Fu Y, Wu J, Wang Y, Wang Y (2008) React Funct Polym 68:1377

    Article  Google Scholar 

  15. Sen Gupta SK, Srivastava M (2006) J Indian Chem Soc 83:787

    Google Scholar 

  16. Sandhir U (1998) PhD thesis, Banaras Hindu University, Varanasi

  17. Munegami T, Shimoyama A (1998) Viva Orig 26:103

    Google Scholar 

  18. Gao J, Wang X, Hu Z, Deng H, Hou J, Lu X, Kang J (2003) Water Res 37:267

    Article  Google Scholar 

  19. Gai K (2007) J Hazard Mater 146:249

    Article  Google Scholar 

  20. Tomizawa S, Tezuka M (2007) Plasma Chem Plasma Process 27:486

    Article  Google Scholar 

  21. Liu Y, Jiang X (2008) Plasma Chem Plasma Process 28:15

    Article  MathSciNet  Google Scholar 

  22. Gong J, Wang J, Xie W, Cai W (2008) J Appl Electrochem 38:1749

    Article  Google Scholar 

  23. Liu Y (2009) J Hazard Mater 166:1495

    Article  Google Scholar 

  24. Liu Y (2009) J Hazard Mater 168:992

    Article  Google Scholar 

  25. Lei W (2009) J Hazard Mater 171:577

    Article  Google Scholar 

  26. Liu Y, Wang D, Sun B, Zhu X (2010) J Hazard Mater 181:1010

    Article  Google Scholar 

  27. Jin X, Wang X, Wang Q, Yue J, Cai Y (2010) Water Sci Technol 62:1457

    Article  Google Scholar 

  28. Jin X, Bai H, Wang F, Wang X, Wang X, Ren H (2011) IEEE Trans Plasm Sci 39:1099

    Article  ADS  Google Scholar 

  29. Yang H, Tezuka M (2011) J Phys D Appl Phys 44:155203

    Article  ADS  Google Scholar 

  30. Yang H, Tezuka M (2011) J Environ Sci 23:1044

    Article  Google Scholar 

  31. Sen Gupta SK, Singh R, Srivastava AK (1998) Indian J Chem 37A:558

    Google Scholar 

  32. Gangal U, Srivastava M, Sen Gupta SK (2010) Plasma Chem Plasma Process:

  33. Spinks JWT, Woods RJ (1976) An introduction to radiation chemistry, 2nd edn. Wiley, New York, p 247

    Google Scholar 

  34. Vogel I (1961) A text book of quantitative inorganic analysis, 3rd edn. Longmans, London, p 314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta K. Sen Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Gangal, U. & Sen Gupta, S.K. Effects of Alkaline Ferrocyanide on Non-faradaic Yields of Anodic Contact Glow Discharge Electrolysis: Determination of the Primary Yield of OH· Radicals. Plasma Chem Plasma Process 32, 609–617 (2012). https://doi.org/10.1007/s11090-012-9361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9361-4

Keywords

Navigation