Skip to main content
Log in

Plasma Assisted Low Temperature Combustion

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper presents recent kinetic and flame studies in plasma assisted low temperature combustion. First, the kinetic pathways of plasma chemistry to enhance low temperature fuel oxidation are discussed. The impacts of plasma chemistry on fuel oxidation pathways at low temperature conditions, substantially enhancing ignition and flame stabilization, are analyzed base on the ignition and extinction S-curve. Secondly, plasma assisted low temperature ignition, direct ignition to flame transition, diffusion cool flames, and premixed cool flames are demonstrated experimentally by using dimethyl ether and n-heptane as fuels. The results show that non-equilibrium plasma is an effective way to accelerate low temperature ignition and fuel oxidation, thus enabling the establishment of stable cool flames at atmospheric pressure. Finally, the experiments from both a non-equilibrium plasma reactor and a photolysis reactor are discussed, in which the direct measurements of intermediate species during the low temperature oxidations of methane/methanol and ethylene are performed, allowing the investigation of modified kinetic pathways by plasma-combustion chemistry interactions. Finally, the validity of kinetic mechanisms for plasma assisted low temperature combustion is investigated. Technical challenges for future research in plasma assisted low temperature combustion are then summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ju Y, Sun W (2015) Plasma assisted combustion: dynamics and chemistry. Prog Energy Combust Sci 48:21–83. doi:10.1016/j.pecs.2014.12.002

    Article  Google Scholar 

  2. Starikovskiy A, Aleksandrov N (2013) Plasma assisted ignition and combustion. Prog Energy Combust Sci 39:61–110

    Article  CAS  Google Scholar 

  3. Starikovskaia SM (2006) Plasma assisted ignition and combustion. J Phys D Appl Phys 39:R265–R299

    Article  CAS  Google Scholar 

  4. Ombrello T, Ju Y, Fridman A (2008) Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma. AIAA J 46(10):2424–2433

    Article  Google Scholar 

  5. Chen Z, Burke MP, Ju Y (2009) Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proc Combust Inst 32(1):1253–1260

    Article  CAS  Google Scholar 

  6. Matalon M (1983) On flame stretch. Combust Sci Technol 31(3–4):169–181

    Article  CAS  Google Scholar 

  7. Ganguly BN (2007) Hydrocarbon combustion enhancement by applied electric field and plasma kinetics. Plasma Phys Controlled Fusion 49:B239

    Article  CAS  Google Scholar 

  8. Pilla G, Galley D, Lacoste DA, Lacas F, Veynante D, Laux CO (2006) Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma. IEEE Trans Plasma Sci 34:2471–2477

    Article  CAS  Google Scholar 

  9. Leonov SB, Kochetov IV, Napartovich AP, Sabel VA, Yarantsev DA (2011) Plasma-induced ethylene ignition and flame holding in confined supersonic air flow at low temperatures. IEEE Trans Plasma Sci 39:781–787

    Article  CAS  Google Scholar 

  10. Michael JB, Dogariu A, Shneider MN, Miles RB (2010) Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures. J Appl Phys 108:093308

    Article  Google Scholar 

  11. Uddi M, Jiang N, Mintusov E, Adamovich IV, Lempert WR (2009) Atomic oxygen measurements in air and air/fuel nanosecond pulse discharges by two photon laser induced fluorescence. Proc Combust Inst 32:929–936

    Article  CAS  Google Scholar 

  12. Stancu GD, Kaddouri F, Lacoste DA, Laux CO (2010) Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF. J Phys D Appl Phys 43:124002

    Article  Google Scholar 

  13. Sun W, Won SH, Ombrello T, Carter C, Ju Y (2013) Direct ignition and S-curve transition by in situ nano-second pulsed discharge in methane/oxygen/helium counterflow flame. Proc Combust Inst 34(1):847–855

    Article  CAS  Google Scholar 

  14. Rusterholtz DL, Lacoste DA, Stancu GD, Pai DZ, Laux CO (2013) Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges. J Phys D Appl Phys 46(46):464010

    Article  Google Scholar 

  15. Kim W, Godfrey M, Cappelli M (2010) The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames. Combust Flame 157:374e83

    Google Scholar 

  16. Kosarev IN, Aleksandrov NL, Kindysheva SV, Starikovskaia SM, Starikovskii AY (2009) Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: C2H6- to C5H12-containing mixtures. Combust Flame 156:221e33

    Article  Google Scholar 

  17. Popov NA (2011) Effect of singlet oxygen O2 (a 1Δg) molecules produced in a gas discharge plasma on the ignition of hydrogen–oxygen mixtures. Plasma Sources Sci Technol 20(4):045002

    Article  Google Scholar 

  18. Sun W, Won SH, Ju Y (2014) In situ plasma activated low temperature chemistry and the S-curve transition in DME/oxygen/helium mixture. Combust Flame 161(8):2054–2063

    Article  CAS  Google Scholar 

  19. Won SH, Jiang B, Diévart P, Sohn CH, Ju Y (2015) Self-sustaining n-heptane cool diffusion flames activated by ozone. Proc Combust Inst 35(1):881–888

    Article  CAS  Google Scholar 

  20. Reuter C, Won SH, Ju Y (2015) Cool flames activated by ozone addition. In: 53rd AIAA aerospace sciences meeting. doi:10.2514/6.2015-1387

  21. Filimonova EA (2015) Discharge effect on the negative temperature coefficient behaviour and multistage ignition in C3H8-air mixture. J Phys D Appl Phys 48(1):015201

    Article  Google Scholar 

  22. Lefkowitz JK, Guo P, Ombrello T, Won SH, Stevens CA, Hoke JL et al (2015) Schlieren imaging and pulsed detonation engine testing of ignition by a nanosecond repetitively pulsed discharge. Combust Flame 162(6):2496–2507

    Article  CAS  Google Scholar 

  23. Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (2002) A comprehensive modeling study of iso-octane oxidation. Combust Flame 129(3):253–280

    Article  CAS  Google Scholar 

  24. Williams FA (1985) Combustion theory, 2nd edn. The Benjamin/Cummings Publishing Company, Menlo Park

    Google Scholar 

  25. Ju Y, Reuter CB, Won SH (2015) Numerical simulations of premixed cool flames of dimethyl ether/oxygen mixtures. Combust Flame 162(10):3580–3588

    Article  CAS  Google Scholar 

  26. Lefkowitz JK, Guo P, Rousso A, Ju Y (2015) Phil Trans R Soc A 373(2048):20140333

    Article  Google Scholar 

  27. Lefkowitz JK, Uddi M, Windom BC, Lou G, Ju Y (2015) In situ species diagnostics and kinetic study of plasma activated ethylene dissociation and oxidation in a low temperature flow reactor. Proc Combust Inst 35(3):3505–3512

    Article  CAS  Google Scholar 

  28. Rothman LS, Gordon IE, Barbe A et al (2009) J Quant Spectrosc Ra 110(9–10):533–572

    Article  CAS  Google Scholar 

  29. Pancheshnyi S, Eismann B, Hagelaar GJM, Pitchford LC (2008) University of Toulouse, LAPLACE, CNRS-UPS-INP, Toulouse, France. http://www.zdplaskin.laplace.univ-tlse.fr

  30. Lutz AE, Kee RJ, Miller JA (1988) Sandia National Laboratories Report SAND87-8248

  31. Hagelaar GJM, Pitchford LC (2005) Plasma Sources Sci Technol 14(4):722–733

    Article  CAS  Google Scholar 

  32. Flitti A, Pancheshnyi S (2009) Eur Phys J Appl Phys 45(2):21001

    Article  Google Scholar 

  33. Adamovich IV, Li T, Lempert WR (2015) Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas. Philos Trans A Math Phys Eng Sci 373(2048). doi:10.1098/rsta.2014.0336

  34. Yang X, Shen X, Santner J, Klippenstein SJ, Ju Y (2015) A high pressure mechanism (HP-Mech) for flame modeling of C0–C2 hydrocarbons, alcohols and methyl esters. The 9th US National Meeting on Combustion, Cincinnati

  35. Sun W, Uddi M, Won SH, Ombrello T, Carter C, Ju Y (2012) Combust Flame 159(1):221–229

    Article  CAS  Google Scholar 

  36. Capitelli M, Ferreira CM, Osipov AI, Gordiets BF (2000) Plasma kinetics in atmospheric gases. Springer, Berlin

    Book  Google Scholar 

  37. Stafford DS, Kushner MJ (2004) J Appl Phys 96(5):2451

    Article  CAS  Google Scholar 

  38. Kosarev IN, Aleksandrov NL, Kindysheva SV, Starikovskaia SM, Starikovskii AY (2008) Combust Flame 154(3):569–586

    Article  CAS  Google Scholar 

  39. Phelps database. www.lxcat.net. Retrieved 4 Oct 2014

  40. Biagi-v7.1 database. www.lxcat.net. Retrieved 4 Oct 2014

  41. Janev RK, Reiter D (2002) Phys Plasmas 9:4071

    Article  CAS  Google Scholar 

  42. Wang H, You X, Joshi AV, Davis SG, Laskin A, Egolfopoulos F, Law CK. http://ignis.usc.edu/USC_Mech_II.htm

  43. Adamovich IV, Lempert WR (2015) Challenges in understanding and predictive model development of plasma-assisted combustion. Plasma Phys Controlled Fusion 57(1):014001

    Article  Google Scholar 

  44. Ombrello T, Won SH, Ju Y, Williams S (2010) Flame propagation enhancement by plasma excitation of oxygen. Part II: effects of O2 (a1Δg). Combust Flame 157(10):1916–1928

    Article  CAS  Google Scholar 

  45. Yang X, Lefkowitz JK, Brumfield BE, Chen Q, Wysocki G, Ju Y (2015) Kinetics studies of O3/O2/CH3OH/Ar mixtures in a photolysis flow reactor. The 9th US National Meeting on Combustion, Cincinnati

  46. Matsumi Y, Inagaki Y, Kawasaki M (1994) Isotopic branching ratios and translational energy release of H and D atoms in the reaction of O(1D) with CH3OD and CD3OH. J Phys Chem 98:3777–3781

    Article  CAS  Google Scholar 

  47. Osif TL, Simonaitis R, Heicklen J (1975) The reactions of O(1D) and HO with CH3OH. J Photochem 4:233–240

    Article  CAS  Google Scholar 

  48. Huang CK, Xu ZF, Nakajima M, Nguyen HMT, Lin MC, Tsuchiya S, Lee YP (2012) Dynamics of the reactions of O(1D) with CD3OH and CH3OD studied with time-resolved Fourier-transform IR spectroscopy. J Chem Phys 137:164307

    Article  Google Scholar 

Download references

Acknowledgments

This work is partly supported by AFOSR plasma MURI project, US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center on Combustion with Grant No. DE-SC0001198, the NSF Grants of CMMI-1449314 and CBET-1507358, and the Open Fund of State Key Laboratory of High-temperature Gas dynamics, Institute of Mechanics, CAS with Grant No. 2014KF04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiguang Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, Y., Lefkowitz, J.K., Reuter, C.B. et al. Plasma Assisted Low Temperature Combustion. Plasma Chem Plasma Process 36, 85–105 (2016). https://doi.org/10.1007/s11090-015-9657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9657-2

Keywords

Navigation